
gamedesigninitiative
at cornell university

the

Game
Audio

Engagement

� Entertains the player
� Music/Soundtrack

� Enhances the realism
� Sound effects

� Establishes atmosphere
� Ambient sounds

The Role of Audio in Games

� Indicate off-screen action
� Indicate player should move

� Highlight on-screen action
� Call attention to an NPC

� Increase reaction time
� Players react to sound faster

The Role of Audio in Games

Feedback

History of Sound in Games

Basic
Sounds

• Arcade games

• Early handhelds

• Early consoles

Early Sounds: Wizard of Wor

History of Sound in Games

Recorded
Sound

Samples

Basic
Sounds

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

Sample = pre-recorded audio

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

More
Variability
of Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

More
Variability
of Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

LibGDX
is here

CUGL
is here

The Technical Challenges

� Sound formats are not (really) cross-platform
� It is not as easy as choosing MP3
� Different platforms favor different formats

� Sound playback APIs are not standardized
� LibGDX & CUGL are layered over many APIs
� Behavior is not the same on all platforms

� Sound playback crosses frame boundaries
� Mixing sound with animation has challenges

File Format

� The data storage format
� Has data other than audio

� Many have many encodings
� .caf holds MP3 and PCM

� Examples:
� .mp3, .wav, .aiff
� .aac, .mp4, .m4a (Apple)
� .flac, .ogg (Linux)

File Format vs Data Format

Data Format

� The actual audio encoding
� Basic audio codec
� Bit rate (# of bits/unit time)
� Sample rate

(digitizes an analog signal)

� Examples:
� MP3, Linear PCM
� AAC, HE-AAC, ALAC
� FLAC, Vorbis

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

MP3 historically avoided due to patent issues

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Supported in LibGDX

MP3 historically avoided due to patent issues

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Supported in CUGL

MP3 historically avoided due to patent issues

Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streams (LibGDX & CUGL do)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� Standard MP3 support is stereo only
� Others support many channels (e.g. 7.1 surround)

Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streaming (CUGL does)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� Standard MP3 support is stereo only
� Others support many channels (e.g. 7.1 surround)

Sound FX: Linear PCM/WAV

Music: OGG Vorbis

Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Sometimes encoded as shorts or bytes MIN to MAX

Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Linear PCM Format

� Samples are organized into (interleaved) channels

� Each channel is essentially a speaker
� Mono sound has one channel
� Stereo sound has two channels
� 7.1 surround sound is eight channels

� A frame is set of simultaneous samples
� Each sample is in a separate frame

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

frame

Linear PCM Format

� The sample rate is frames per second

� Example: 0.5 seconds of stereo at 44.1 kHZ
� 0.5 s * 44100 f/s = 22050 frames
� 2 samples/frame * 22050 frames = 44100 samples
� 4 bytes/sample * 44100 samples = 176.4 kBytes

� 1 minute of stereo CD sound is 21 MB!

1 second

frames

Playing Sound Directly

Sound
Card

PCM data buffer

Game
Loop

Playing Sound Directly

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

Direct Sound in LibGDX: AudioDevice
� /**

* Writes the array of float PCM samples to the audio device.
*
* This method blocks until they have been processed.
*/
void writeSamples(float[] samples, int offset, int numSamples)

� /**
* Writes array of 16-bit signed PCM samples to the audio device.
*
* This method blocks until they have been processed.
*/
void writeSamples(short[] samples, int offset, int numSamples)

Direct Sound in LibGDX: AudioDevice
� /**

* Writes the array of float PCM samples to the audio device.
*
* This method blocks until they have been processed.
*/
void writeSamples(float[] samples, int offset, int numSamples)

� /**
* Writes array of 16-bit signed PCM samples to the audio device.
*
* This method blocks until they have been processed.
*/
void writeSamples(short[] samples, int offset, int numSamples)

Requires separate
audio thread

� Buffer is really a queue
� Output from queue front
� Playback writes to end
� Creates a playback delay

� Latency: amount of delay
� Some latency must exist
� Okay if latency ≤ framerate
� Android latency is ~90 ms!

� Buffering is a necessary evil
� Keeps playback smooth
� Allows real-time effects

The Latency Problem

Playback
Buffer

Sound
Card

Sound
Source

delay

Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

• Windows: 528 bytes (even if you ask for larger)
• MacOS, iOS: 512-1024 bytes (hardware varies)
• Android: 2048-4096 bytes (hardware varies)

How Streaming Works

� All sound cards only play PCM data
� Other files (MP3 etc.) are decoded into PCM data
� But the data is paged-in like memory in an OS

� Why LibGDX/CUGL can stream WAV files too!

Sound
File

Streaming
Buffer

Sound
Engine

Append PCM Page Retrieve PCM Page

How Streaming Works

� Sound: Sound asset that is preloaded as full PCM

� Music: Sound asset that is streamed as PCM pages

Sound
Card

Sound
File

Streaming
Buffer

Page size set
by file format

Chunk size set
by audio API

Handling Multiple Sounds

Sound
Card

PCM
Data

PCM
Data

PCM
Data

PCM
Data

PCM
Data

Literally!

Handling Multiple Sounds

� Can create values outside of -1 to 1
� This causes clipping/distortion
� Common if many simultaneous sounds

� Audio engineer must balance properly

Sound
Card

PCM
Data

PCM
Data

PCM
Data

PCM
Data

PCM
Data

Literally!

Why is Mixing Hard?

� Playback may include multiple sounds
� Sounds may play simultaneously (offset)
� Simultaneous sounds may be same asset
� Asset (source) vs. Instance (playback)

� Playback crosses frame boundaries
� It may span multiple animation frames
� Need to know when it stops playing
� May need to stop (or pause) it early

We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

This is the purpose of a sound engine

Cross-Platform Sound Engines

� OpenAL
� Created in 2000 by Loki Software for Linux
� Was an attempt to make a sound standard
� Loki went under; last stable release in 2005
� Apple supported, but HARD deprecated in iOS 9

� FMOD/WWISE
� Industry standard for game development
� Mobile support is possible but not easy
� Not free; but no cost for low-volume sales

Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022

Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022

And many competing 3rd party solutions

What Does LibGDX Use?

� LibGDX support is actually OS specific
� Recall the core/desktop package distinction
� Because LibGDX supports mobile and computer

� Different platforms have different backends
� All desktop platforms are built on OpenAL
� The android backend uses android.media

� Needs an abstraction bringing all together
� This is done with the Audio interface

The LibGDX Audio Interface

� LibGDX provides an audio singleton
� One global object referencing audio device
� Access via GDX.audio (static field of GDX)
� Same principle as System.out

� Singleton implements the Audio interface
� Use it to access AudioDevice for direct sound
� Use it to allocate new Sound, Music instances
� But do not use it for much sound manipulation

The LibGDX Audio Interface

� LibGDX provides an audio singleton
� One global object referencing audio device
� Access via GDX.audio (static field of GDX)
� Same principle as System.out

� Singleton implements the Audio interface
� Use it to access AudioDevice for direct sound
� Use it to allocate new Sound, Music instances
� But do not use it for much sound manipulation

Essentially a factory
for other classes

Sound

� Primary method is play()
� Returns a long integer
� Represents sound instance
� loop() is a separate method

� Has no public constructor
� Use Audio.newSound(f)
� Audio can cache/preload

� Must dispose when done

The LibGDX Sound Classes

Music

� Primary method is play()
� This is a void method
� Only allows one instance
� loop is an attribute of music

� Has no public constructor
� Use Audio.newMusic(f)
� Audio can cache the file

� Must dispose when done

Playing a Sound

� Playback may include multiple sounds
� Sounds may play simultaneously (offset)
� Simultaneous sounds may be same asset
� Asset (source) vs. Instance (playback)

� Playback crosses frame boundaries
� It may span multiple animation frames
� Need to know when it stops playing
� May need to stop (or pause) it early

Playing a Sound

� Playback may include multiple sounds
� Sounds may play simultaneously (offset)
� Simultaneous sounds may be same asset
� Asset (source) vs. Instance (playback)

� Playback crosses frame boundaries
� It may span multiple animation frames
� Need to know when it stops playing
� May need to stop (or pause) it early

Requires an understanding of OpenAL

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

…

Engine has fixed
number of slots
(historically 24)

Slot

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot
to play it

Engine has fixed
number of slots
(historically 24)

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot
to play itSound

Queue
to follow

after

Engine has fixed
number of slots
(historically 24)

Playing a Sound with Slots

� Request a playback slot for your asset
� If none is available, sound fails to play
� Otherwise, it gives you an id for the slot

� Load asset into the slot (but might stream)

� Play the playback slot
� Playing is a property of the slot, not asset
� Playback slot has other properties, like volume

� Release the slot when the sound is done
� This is usually done automatically

Application Design

Mixer
Slot

Slot

Slot

Slot

Sound

…

Need to
remember
the slot id

Volume
is property
of a slot!

The Sound API
� /**

* @return channel id for sound playback
*
* If no channel is available, returns -1
* @param volume The sound volume
* @param pitch The pitch multiplier (>1 faster, <1 slower)
* @param pan The speaker pan (-1 full left, 1 full right)
*/

public long play(float volume, float pitch, float pan);

� public void stop(long audioID);

� public void resume(long audioID);

� public void setLooping(long audioID, boolean loop);

� Public void setVolume(long audioID, float volume);

The Sound API
� /**

* @return channel id for sound playback
*
* If no channel is available, returns -1
* @param volume The sound volume
* @param pitch The pitch multiplier (>1 faster, <1 slower)
* @param pan The speaker pan (-1 full left, 1 full right)
*/

public long play(float volume, float pitch, float pan);

� public void stop(long audioID);

� public void resume(long audioID);

� public void setLooping(long audioID, boolean loop);

� Public void setVolume(long audioID, float volume);

Need to
remember
channel id

Returns available
channel id

Why This is Undesirable

� Tightly couples architecture to sound engine
� All controllers need to know this playback slot id
� Playback must communicate id to all controllers

� Instances usually have a semantic meaning
� Example: Torpedo #3, Ship/crate collision
� Meaning is independent of the slot assigned
� Would prefer to represent them by this meaning

� Solution: Refer to instances by keys

Idea: SoundController Class

� A SoundController is essentially a hashmap
� Map strings (keys) to integers (slot ids)
� Only stores a key when instance is playing

� This class needs to be a singleton
� So we can access this anywhere at all time
� Demo: See the class provided with this lecture

� To work, the map must be up-to-date at all times
� We use this controller to play the sounds
� And it must be notified when a sound is done

Stopping Sounds

� Would like to know when a sound is finished
� To free up the slot (if not automatic)
� To stop any associated animation
� To start a follow-up sound

� Two main approaches
� Polling: Call an isPlaying() method
� Callback: Pass a function when play

� Default LibGDX cannot do either of these

Stopping Sounds

� Would like to know when a sound is finished
� To free up the slot (if not automatic)
� To stop any associated animation
� To start a follow-up sound

� Two main approaches
� Polling: Call an isPlaying() method
� Callback: Pass a function when play

� Default LibGDX cannot do either of these

Cannot do in
android.media

Solution: AudioEngine

� You are all making desktop games
� This means you are always using OpenAL
� Just need a way to expose OpenAL features
� This is the purpose of GDIAC audio backend

� Basic interface is AudioEngine
� Upcast GDX.audio to this interface
� Now have access to SoundBuffer, MusicBuffer
� These classes give extra features you need

� Note: AssetDirectory handles this automatically

SoundBuffer

� Works just like Sound
� Primary method is play()
� Returns a long integer

� But has playback control
� Can poll if still playing
� Can add listener to monitor

� Exposes OpenAL features
� Elapsed playback time
� Panning between speakers
� Sound pitch control

The GDIAC Sound Classes

MusicBuffer

� Works just like Music
� Primary method is play()
� This is a void method

� But has a playback queue
� Can add AudioSource to it
� Provides gapless playback

� Methods manage the queue
� Add or remove music
� Swap out music at position
� Skip over current music

Problem with the Slots Model

� All controls are embedded in the slot
� Example: Volume, looping, play position
� Restricted to a predetermined set of controls

� Modern games want custom sound-processing
� User defined sound filters (low pass, reverb)
� Advanced equalizer support
� Support for surround and 3D sound
� Procedural sound generation

DSP Processing: The Mixer DAG

Source Effect

Mixer

Main
Mixer

Effect

Source Effect Effect

Mixer
Source

Source
Effect

Example: UDK Kismet

Example: FMOD

Example: Pure Data

The Slot Model is a Special Case

Empty

Main
Mixer

Source

Input

Empty

Source

Input

Input

Input

Input

Source Interface to set state:
volume, pan, pitch

Calling play() assigns an input slot behind the scenes

The Slot Model is a Special Case

Empty

Main
Mixer

Mixer

Input

Empty

Input

Input

Input

Source

…

Source

Effect

Source

Effect

Theoretically input should accept any audio subgraph

The Slot Model is a Special Case

Empty

Main
Mixer

Mixer

Input

Empty

Input

Input

Input

Source

…

Source

Effect

Source

Effect

Even OpenAL cannot do this.

The Slot Model is a Special Case

Empty

Main
Mixer

Mixer

Input

Empty

Input

Input

Input

Source

…

Source

Effect

Source

Effect Feature in engine for 4152!

Even OpenAL cannot do this.

Summary

� Audio design is about creating soundscapes
� Music, sound effects, and dialogue
� Combining sounds requires a sound engine

� Cross-platform support is a problem
� Licensing issues prevent a cross-platform format
� Very little standardization in sound APIs

� Best engines use digital signal processing (DSP)
� Mixer graph is a DAG supporting sound effects
� Unfortunately, we cannot do this in LibGDX

