Serial Adder

| -bit “state” is carry-in bit
Mealy machine: output (sum) depends on state and inputs

E > Combinational > sum
?l  Logic (FA)
<€
cout cin
> D Q
FF
>




Example of Serial Adder

a= 10110 sum = (1)00101
b=0I111

Clk

cin

sum

cout

Clock Rising Edge:
cin « cout
recompute sum, cout

Before Next Clock:
inputs a,b may change
recompute sum, cout

gosL



Another Example

a=10110 sum = (1)0000|
b=01011 Clock Rising Edge:
cin « cout
Clk recompute sum, cout
a Before Next Clock:
inputs a,b may change
b recompute sum, cout

cin .
Sum is correct only

(/\ just before clock
sum

cout

gosL



Serial Adder - Moore

2-bit “state” is carry-in bit and (previous) sum
Moore machine: output (sum) depends on state only

Z sum
E > Combinational = FF Q|
?l  Logic (FA) .
<€
cout cin
» D Q
FF
>




The Same Example - Moore

a= 10110 sum = (1)0000|
b=0I01I
- Clock Rising Edge:
— _ Cin « cout
a sum <« Z
recompute z, cout
b

Before Next Clock:
cin inputs a,b may change
recompute z, cout

Sum is available at
next clock

cout

sum

:
N

A=

gosL



More Bits At A Time

Let’s add two bits at a time...

01011

11110 _
serial
adder

o111 1

o111 1

010110

s this faster?

+ 001111
100101

fosL



Two-Bit Adder

1/1]0 — 3 \
T | 1{o0]o0
/ - :
of1]1 EA Stfm _
o111 3




Performance

First bit-serial adder:
e takes 2N clock cycles to add 2N bits

e smaller cycle time

Adding two bits at a time:
e takes N clock cycles to add 2N bits
e larger cycle time

Total time = (humber of cycles) x (cycle period)

fosL



Building Blocks For Arithmetic

recall the full-adder design.

ab + as + bs

(] —]
p—— SUTTL

b—— FA
- CATTY

ab + ab

(ab+ab)s + (ab + ab)s

Rlcel:i
|

gosL




Integer Addition

e Three input bits a, b, s

e Output: two bits sum and carry

Logic equations and gate diagram derived from
truth-tables.

What about 4-bit addition?

gosL




Integer Addition

Solution 1. write truth-table, derive logic equations,
draw gate diagram.

Solution 2:

1 1 O
1 O 1
+ O 1 1
1 O O O

Use a number of full-adders!

gosL



Integer Addition

1 0 0 1 1 1 0 1
1 1 1 0 0
f
‘ \ | / '
0 0 1
~ carry-out
of one stage is the least-significant
carry—in for the next bit: set carry-in to 0

0
2’'s complement? Addition time for N bits?

FosL




Integer Addition

all we need is the carry-out...
= compute carry-out cout for blocks

e input: 00, cout = O Kill
o input: 1 1, cout = 1 generate
e input: 01 or 10, cout=carry-in (cin) propagate

cout = cin-P + d
G = a-b
P = a++5b

Block codes:
Go1 = G1 + Gol
Po1 = o




Integer Addition

compute block codes to
speed up carry computation.

S N T S N T N I R S T Y N

T T T I T [T AT
F I ,)’/z v
1 BLOCK CODE
&ﬁ FA -— \
1 .~ carry—out for carry—in to
' I l ' the group the group

| | P | | P

| full-adder array |' | full-adder array j_ | full-adder array |' | full-adder array |'
| | | | | | | |

H block carry calculation | M block carry calculation M block carry calculation | M block carry calculation |

gosL




Doing Carry-Lookahead Top-Down

We want to build an n-bit carry-lookahead adder ...
- a3, b, cin are the inputs
- G, P, sum are the outputs

cin




Build a 2n-bit adder from two n-bit ones

Use “divide-and-conquer” approach

_ S i




Carry Lookahead

a[0:2n) b[0:2n)
______ |__________________J______ Equations for G,P:
a[n:2|n) b[r|1:2n) a[0:n) b[O:n) G = Gh + PheGl
A Al P = PheP|




Carry-in and Sum

a[0:2n) b[0:2n)
a[n:2|n) b[n:2n) a[0:n) b[O:n)
cinh cinl cin
Ah —, Al -

sum[n:2n) sum[0:n)

sum[0:2n)

Equation for cin:

cinl

cinh

cin

Gl + cinl » P




Asymptotic Time

A crude approximation: phases

Phase |: compute all G,P values
T(l) = constant
T(2n) = T(n) + constant
Solution: T(n) is O(log n)

Phase 2: now compute sum ... how much longer?
S(I) = constant
S(2n) = constant + S(n)
Solution: S(n) also is O(log n)




