
CS3110 Fall 2013 Lecture 9:
Environment Model (9/26)

Robert Constable

1 Lecture Plan

1. Comments on Red-Black tree insert operation (See Fall 2009 CS3110
Lecture 10 posted as Lectures 7, 8 on our web page.)

2. Comments on understanding, coding and proving complex algorithmic
problems – methodology

3. The environment model needed for PS3 (See Spring 2011 Lecture 12)

4. Comments on BNF and Variant Types (See Fall 2009 Lecture 4)

1



2 Red Black Tree – insert “fix-up stage”

We insert as in binary search trees and we color the node red (this
preserves the invariant that each path to a leaf has the same number of
black nodes). We might end up with a tree like this:

We need to rebalance and preserve the black height. Number this subtree
to have the bst property.

See page 4, Lecture 10, Spring 2011.

2



3 Comments on methodology

• create simple examples of the data structure either “by hand” or by
building the constructors first, e.g. like my binary search tree from
Lecture 6

• build the easy functions for “experimenting” with the trees, e.g.
insert, find, max, delete raw, traverse

• build operations for specification, e.g. mth, length; for trees build
depth, path to node, index by path, etc.

• try to structure an argument or assemble evidence as your code
executes

Mike gave a virtuoso demonstration of how the structural induction style
informal proof for red black insertion drove the code.

4 Binary search trees (BST’s)

Here is one

3



We need a type such as int with a linear order relation <. The tree has

the property that at each node mn the left subtree has elements less
than n and the right subtree has elements greater.

5 The environment model of evaluation

Prof. Kozen discusses this topic in Lecture 12 motivating by saying that:

The substitution model is inefficient and the environment model
is not and more closely models how the OCaml interpreter
actually works.

He covered the substitution model in Lecture 6. We covered
that as well with our account of reduction rules.

A key idea needed for the environment model is the notion of the scope of
a variable binding as in

let statements

let f x = e1 in e2 let x = 2 and y = 3 in x+ y

4



in function bodies

fun x→ fun y → fun x→ x+ y

5.1 Scope and binding in “lets” and functions

Notice that simple let statements can be expressed as function application.

let x = e1 in e2 is just (fun x→ e2) e1 clearly
let x = e1 in e2(x) is just (fun x→ e2(x)) e1 ↓ e2(e1/x)

This looks more compact with lambda notation

let x = e1 in e2(x) is (λx. e2(x)) e1.

We can convert most let statements to these function applications,
e.g.

let f x = 2 ∗ x in f 3

we know f 3 ↓ 6

this is also let f = λx. 2 ∗ x
in f 3, we get

f 3 ↓ 6

What is the scope of the x binding in fun x→ exp ? e.g.

(a) fun x→ fun y → x ∗ y versus

(b) fun x→ fun y → (fun x→ x ∗ x) versus

(c) fun x→ fun y → fun z → x ∗ y ∗ z

5



This is a bit more compact with λ-notation

(a) λx. λy. x ∗ y

(b) λx. λy. λx. x ∗ x

(c) λx. λy. λz. x ∗ y ∗ z

In (a) the scope of λx is λy. x ∗ y and the scope of λy is x ∗ y.
In (b) the scope of the first λx is λy. λx. x ∗ x, but it is the inner most
occurrence of λx that binds x.

In PS3 we discuss lazy evaluation in which the argument to a function
might not be a canonical value but an expression that needs to be reduced.
For example suppose we have introduced a let environment as follows:

(* NORMAL USE OF LET , NO CAPTURE , EAGER EVALUATION *)

# let x = 5 in (fun y -> (fun x -> y * x) x ) 3 ;;

- : int = 15

(* CAPTURE OF let x = 5 BY INNER (fun x -> y * x) *)

# let x = 5 in (fun y -> (fun x -> y * x) ) 3 ;;

Characters 4-5:

let x = 5 in (fun y -> (fun x -> y * x) ) 3 ;;

^

Warning 26: unused variable x.

- : int -> int = <fun >

What happened is that fun x→ y ∗ x “captured the x” and ignored the
let x = 5 binding.

5.2 Lazy evaluation

We won’t study lazy evaluation in OCaml, although there is a package that
supports it. These remarks are meant as background for PS3 and as

6



background for a broader discussion of programming language design.
Haskell and Nuprl use lazy evaluation. In Nuprl it is the default but eager
evaluation is also used, as “call by value.”

In lazy evaluation, how would we solve the problem of capture? Note, we
don’t want to force the evaluation of x to 5 until we need to evaluate it.

Capture is avoided by renaming the binding variable that is doing the
“capturing,” so we rewrite fun x→ x ∗ x to fun x1→ x ∗ x1 (this is called
α-conversion). Now we get

(fun x1→ x ∗ x1) 3
↓

x ∗ 3 where x = 5, hence
↓
15

5.3 Binding and scope

So in the presence of lazy evaluation we must be especially careful about
scope and binding.

But even for OCaml’s call by value semantics, we must be clear about the
evaluation environment. In the environment model, we avoid substitution
until a value is needed by keeping track of variable bindings in a list called
a closure.

We will illustrate the use of closures in an example and define them more
fully next time. Meanwhile please read Prof. Kozen’s Lecture 12,
Spring 2011. Also look at Recitation 6 Spring 2011, at the evil
example page 3.

7





9


	Lecture Plan
	Red Black Tree – insert ``fix-up stage"
	Comments on methodology
	Binary search trees (BST's)
	The environment model of evaluation
	Scope and binding in ``lets" and functions
	Lazy evaluation
	Binding and scope
	Evaluation by substitution example
	Evaluation by closures




