CS 312 Recitation 8
ADT Examples: Stacks Queues, and Dictionaries

In this recitation, we will see more examples of modules that implement functional data structures.

Stacks and Queues

In Recitation 7, we discussed stacks and queues. We repeat the interface for stacks here, adding a notation for representing the abstract contents.

module type STACK =
    sig
      (* Overview: an 'a stack is a stack of elements of type 'a.
       * We write |e1, e2, ... en| to denote the stack with e1
       * on the top and en on the bottom. *)
      type 'a stack
      exception EmptyStack

      val empty : 'a stack
      val isEmpty : 'a stack -> bool

      val push : ('a * 'a stack) -> 'a stack
      val pop : 'a stack -> 'a stack
      val top : 'a stack -> 'a
      val map : ('a -> 'b) -> 'a stack -> 'b stack
      val app :  ('a -> unit) -> 'a stack -> unit
      (* note: app traverses from top of stack down *)
    end

Now we present an interface for queues; first-in, first-out data structures. Again, we introduce a notation for discussing the abstract contents of the queue.

module type QUEUE =
    sig
      (* Overview: an 'a queue is a FIFO queue of elements of type 'a.
       * We write <e1, e2, ... en> to denote the queue whose front
       * is e1 and whose back is en. Elements are enqueued at the back
       * and dequeued from the front. *)
      type 'a queue
      exception EmptyQueue

      val empty : 'a queue
      val isEmpty : 'a queue -> bool

      (* enqueue(x, q) is q with x enqueued at the back.
       * Example: enqueue(3, <1,2>) = <1,2,3> *)
      val enqueue : ('a * 'a queue) -> 'a queue

      (* dequeue(q) is q with its front element removed.
       * Requires: q is nonempty. *).
      val dequeue : 'a queue -> 'a queue

      (* front(q) is the element at the front. Requires: q is nonempty. *)
      val front : 'a queue -> 'a

      val map : ('a -> 'b) -> 'a queue -> 'b queue
      val app : ('a -> unit) -> 'a queue -> unit
    end

The simplest possible implementation for queues is to represent a queue via two stacks: one stack A on which to enqueue elements, and one stack B from which to dequeue elements. When dequeuing, if stack B is empty, then we reverse stack A and consider it the new stack B.

Here is an implementation for such queues. It uses the stack structure Stack, which is rebound to the name S inside the structure to avoid long identifier names.

module Queue : QUEUE =
    struct

      module S = Stack

      type 'a queue = ('a S.stack * 'a S.stack)
      (* AF: The pair (|e1, e2, ... en|, |e'1, e'2, ..., e'n|) represents
       *     the queue <e'1, e'2, ..., e'n, en, ..., e2, e1>.
       *)

      exception EmptyQueue

      let empty : 'a queue = (S.empty, S.empty)
      let isEmpty ((s1,s2):'a queue) =
        S.isEmpty (s1) && S.isEmpty (s2)

      let enqueue (x:'a, (s1,s2):'a queue) : 'a queue =
        (S.push (x,s1), s2)

      let rev (s:'a S.stack):'a S.stack = let
        let loop (old:'a S.stack, new:'a S.stack):'a S.stack =
          if (S.isEmpty (old))
            then new
          else loop (S.pop (old), S.push (S.top (old),new))
      in
        loop (s,S.empty)

      let dequeue ((s1,s2):'a queue) : 'a queue =
        if (S.isEmpty (s2))
          then try (S.empty, S.pop (rev (s1)))
                    with S.EmptyStack -> raise EmptyQueue
        else (s1,S.pop (s2))

      let front ((s1,s2):'a queue):'a =
        if (S.isEmpty (s2))
          then try S.top (rev (s1))
                   with S.EmptyStack -> raise EmptyQueue
        else S.top (s2)

      let map (f:'a -> 'b) ((s1,s2):'a queue):'b queue =
        (S.map f s1, S.map f s2)

      let app (f:'a -> unit) ((s1,s2):'a queue):unit =
        (S.app f s2;
         S.app f (rev (s1)))

         end

Fractions

Another simple data type is a fraction, a ratio of two integers. Here is a possible interface:

module type FRACTION =
    sig
	(* A fraction is a rational number p/q, where q != 0.*)
	type fraction
	(* Returns: make n d  is n/d. Requires: d != 0. *)
	val make : int -> int -> fraction
	val numerator : fraction -> int
	val denominator : fraction -> int
	val toString : fraction -> string
	val toReal : fraction -> float
	val add : fraction -> fraction -> fraction
	val mul : fraction -> fraction -> fraction
   end

Here's one implementation of fractions -- what can go wrong here?

module Fraction1 : FRACTION =
    struct
	type fraction = { num:int; denom:int }
        (* AF: The record {num=n; denom=d} represents fraction (n/d) *)

	let make (n:int) (d:int) = {num=n, denom=d}

	let numerator(x:fraction):int = x.num

	let denominator(x:fraction):int = x.denom

	let toString(x:fraction):string =
	    (string_of_int (numerator x)) ^ "/" ^
	    (string_of_int (denominator x))

	let toReal(x:fraction):float =
	    (float_of_int (numerator x)) / (float_of_int (denominator x))

	let mul (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(numerator y))
	         ((denominator x)*(denominator y))

	let add (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(denominator y) +
		  (numerator y)*(denominator x))
		 ((denominator x)*(denominator y))
    end

There are some weaknesses with this implementation. It would probably be better to check the denominator. Second, we're not reducing to smallest form. So we could overflow faster than we need to. And maybe we don't want to allow negative denominators.

We should pick a representation invariant that describes how we're going to represent legal fractions. Here is one choice:

module Fraction2 : FRACTION =
    struct
	type fraction = { num:int, denom:int }
        (* AF: represents the fraction num/denom
	 * RI:
	 *  (1) denom is always positive
	 *  (2) always in most reduced form
	 *)

	(* Returns the greatest common divisor of x and y.
	 * Requires: x, y are positive.
	 * Implementation: Euclid's algorithm.
	 *)
	let rec gcd (x:int) (y:int) : int =
		if x = 0 then y
		else if (x < y) then gcd (y - x) x
		else gcd y (x - y)

	exception BadDenominator

	let make (n:int) (d:int) : fraction =
	    if d = 0 then raise BadDenominator
	    else let g = gcd (abs n) (abs d) in
	         let n2 = n div g in
	         let d2 = d div g
	    in
	         if (d2 < 0) then {num = -n2, denom = -d2}
	         else {num = n2, denom = d2}

	let numerator(x:fraction):int = x.num

	let denominator(x:fraction):int = x.denom

	let toString(x:fraction):string =
	    (string_of_int (numerator x)) ^ "/" ^
	    (string_of_int (denominator x))

	let toReal(x:fraction):float =
	    (float_of_int (numerator x)) / (float_of_int (denominator x))

	(* Notice that we didn't have to re-code mul or add --
	 * they automatically get reduced because we called
	 * make instead of building the data structure directly.
	 *)
	let mul (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(numerator y))
	         ((denominator x)*(denominator y))

	let add (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(denominator y) +
		  (numerator y)*(denominator x))
		 ((denominator x)*(denominator y))
    end
  

Dictionaries

A very useful abstraction is a dictionary: a mapping from strings to other values. A more general dictionary that maps from one arbitrary key type to another is usually called a map or an associative array, although sometimes “dictionary” is used for these as well. In any case, the implementation techniques are similar. Here's an interface for dictionaries:

module type DICTIONARY =
    sig
        (* An 'a dict is a mapping from strings to 'a.
	   We write {k1->v1, k2->v2, ...} for the dictionary which
       maps k1 to v1, k2 to v2, and so forth. *)
	type key = string
    type 'a dict

	(* make an empty dictionary carrying 'a values *)
	val make : unit -> 'a dict

	(* insert a key and value into the dictionary *)
	val insert : 'a dict -> key -> 'a -> 'a dict

	(* Return the value that a key maps to in the dictionary.
	 * Raise NotFound if there is not mapping for the key. *)
	val lookup : 'a dict -> key -> 'a
	exception NotFound

   end

Here's an implementation discussed in recitation 6.

module FunctionDict : DICTIONARY =
  struct
    type key = string
    type 'a dict = string -> 'a
    (* The function f represents the mapping in which x is mapped to
     * f(x), except for x such that f raises NotFound, which are not
     * in the mapping.
     *)
    exception NotFound
    let make () = fun _ -> raise NotFound
    let lookup (d: 'a dict) (key: string) : 'a = d key
    let insert (d:'a dict) (k:key) (x:'a) : 'a dict =
      fun k' -> if k=k' then x else d k'
  end    

Here is another implementation: an association list [(key1,x1),...,(keyn,xn)]

module AssocList : DICTIONARY =
    struct
       type key = string
       type 'a dict = (key * 'a) list

       (* AF: The list [(k1,v1), (k2,v2), ...] represents the dictionary
        *     {k1 -> v1, k2 -> v2, ...}, except that if a key occurs
	    *     multiple times in the list, only the earliest one matters.
	    * RI: true.
	    *)

       let make():'a dict = []

       let insert (d:'a dict) (k:key) (x:'a) : 'a dict = (k,x)::d

       exception NotFound

	let lookup (d:'a dict) (k:key) : 'a =
	    match d with
		[] -> raise NotFound
	      | ((k',x)::rest) ->
		    if (k = k') then x
		    else lookup rest k
    end

This next implementation seems a little better for looking up values. Also note that the abstraction function does not need to specify what duplicate keys mean.

module SortedAssocList : DICTIONARY =
    struct
        type key = string
        type 'a dict = (key * 'a) list
        
        (* AF: The list [(k1,v1), (k2,v2), ...] represents the dictionary
         *     {k1 -> v1, k2 -> v2, ...}
	 * RI: The list is sorted by key and each key occurs only once
	 *     in the list. *)

	let make():'a dict = []

	let insert (d:'a dict) (k:key) (x:'a) : 'a dict =
	    match d with
		[] -> (k,x)::nil
	      | (k',x')::rest ->
		    (match String.compare(k,k') with
			 GREATER -> (k',x')::(insert rest k x)
		       | EQUAL -> (k,x)::rest
		       | LESS -> (k,x)::(k',x')::rest)

	exception NotFound

	let lookup (d:'a dict) (k:key) : 'a =
	    match d with
		[] -> raise NotFound
	      | ((k',x)::rest) ->
		    (match String.compare(k,k') with
			 EQUAL -> x
		       | LESS -> raise NotFound
		       | GREATER -> lookup rest k)
    end

Here is another implementation of dictionaries. This one uses a binary tree to keep the data -- the hope is that inserts or lookups will be proportional to log(n) where n is the number of items in the tree.

module AssocTree : DICTIONARY =
    struct
	type key = string
	type 'a dict = Empty | Node of key * 'a * 'a dict * 'a dict

        (* AF: Empty represents the empty mapping {}
         *     Node (key, datum, left, right) represents the union of the
         *     mappings {key -> datum}, AF(left), and AF(right).
	  * RI: for Nodes, data to the left have keys that
         *     are LESS than the datum and the keys of
	  *     the data to the right. *)

        let make():'a dict = Empty

	let rec insert (d:'a dict) (k:key) (x:'a) : 'a dict =
	    match d with
		Empty -> Node(k,x,Empty,Empty)
	      | Node (k', x', l, r) ->
		    (match String.compare k k' with
			 0 -> Node(k, x, l, r)
		       | -1 -> Node(k', x', insert l k x, r)
		       | 1 -> Node(k', x', l, insert r k x)
		       | _ -> raise (Failure "Impossible")
		    )

	exception NotFound

	let rec lookup (d:'a dict) (k:key) : 'a =
	    match d with
		Empty -> raise NotFound
	      | Node(k',x,l,r) ->
		    (match String.compare k k' with
			 0 -> x
		       | -1 -> lookup l k
		       | 1 -> lookup r k
		       | _ -> raise (Failure "Impossible")
		    )
    end