
Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.
I In computer science, we’re typically interested in patterns that

are sequences of character strings
I I think “Halpern” a very interesting pattern
I I may want to find all occurrences of that pattern in a paper

I Other patterns:
I if followed by any string of characters followed by then
I all filenames ending with “.doc”

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that
can recognize certain types of patterns, called regular languages

I The text does not cover finite automata; there is a separate
handout on CMS.

1 / 37

Finite Automata
A finite automaton is a machine that is always in one of a finite
number of states.

I When it gets some input, it moves from one state to another
I If I’m in a “sad” state and someone hugs me, I move to a

“happy” state
I If I’m in a “happy” state and someone yells at me, I move to a

“sad” state

I Example: A digital watch with “buttons” on the side for
changing the time and date, or switching it to “stopwatch”
mode, is an automaton

I What are the states and inputs of this automaton?

I A certain state is denoted the start state
I That’s how the automaton starts life

I Other states are denoted final state
I The automaton stops when it reaches a final state
I (A digital watch has no final state, unless we count running

out of battery power.)

2 / 37

Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

I The nodes represent the states of the machine

I The edges are labeled by inputs, and describe how the
machine transitions from one state to another

3 / 37

Example:

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I There are four states: s0, s1, s2, s3
I s0 is the start state (denote by “start →”, by convention)
I s0 and s3 are the final states (denoted by double circles, by

convention)
I The labeled edges describe the transitions for each input

I The inputs are either 0 or 1
I in state s0 and reads 0, it stays in s0
I If the machine is in state s0 and reads 1, it moves to s1
I If the machine is in state s1 and reads 0, it moves to s1
I If the machine is in state s1 and reads 1, it moves to s2

4 / 37

s0start s3

s1

s2
0

1

1

0

0

1
0,1

What happens on input 00000? 0101010? 010101? 11?

I Some strings move the automaton to a final state; some don’t.

I The strings that take it to a final state are accepted.

5 / 37

A Parity-Checking Automaton
Here’s an automaton that accepts strings of 0s and 1s that have
even parity (an even number of 1s).
We need two states:

I s0: we’ve seen an even number of 1s so far

I s1: we’ve seen an odd number of 1s so far

The transition function is easy:

I If you see a 0, stay where you are; the number of 1s hasn’t
changed

I If you see a 1, move from s0 to s1, and from s1 to s0

s0start s1

0

1

1
0

6 / 37

Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple M = (S , I , f , s0,F):

I S is a finite set of states;

I I is a finite input alphabet (e.g. {0, 1}, {a, . . . , z})
I f is a transition function; f : S × I → S

I f describes what the next state is if the machine is in state s
and sees input i ∈ I .

I s0 ∈ S is the initial state;

I F ⊆ S is the set of final states.

7 / 37

Example:

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I S = {s0, s1, s2, s3}
I I = {0, 1}
I F = {s0, s3}
I The transition function f is described by the graph;

I f (s0, 0) = s0; f (s0, 1) = s1; f (s1, 0) = s0; . . .

You should be able to translate back and forth between finite
automata and the graphs that describe them.

8 / 37

Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

I A language is a set of strings

We need tools for describing languages.
I If A and B are sets of strings, then AB, the concatenation of

A and B, is the set of all strings ab such that a ∈ A and
b ∈ B.

I Example: If A = {0, 11}, B = {111, 00}, then
I AB = {0111, 000, 11111, 1100}
I BA = {1110, 11111, 000, 0011}

I Define An+1 inductively:
I A0 = {λ}: λ is the empty string
I A1 = A
I An+1 = AAn

I A∗ = ∪∞n=0A
n.

I What’s {0, 1}n? {0, 1}∗? {11}∗?

9 / 37

Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

I A language is a set of strings

We need tools for describing languages.
I If A and B are sets of strings, then AB, the concatenation of

A and B, is the set of all strings ab such that a ∈ A and
b ∈ B.

I Example: If A = {0, 11}, B = {111, 00}, then
I AB = {0111, 000, 11111, 1100}
I BA = {1110, 11111, 000, 0011}

I Define An+1 inductively:
I A0 = {λ}: λ is the empty string
I A1 = A
I An+1 = AAn

I A∗ = ∪∞n=0A
n.

I What’s {0, 1}n? {0, 1}∗? {11}∗?

9 / 37

Regular Expressions

A regular expression is an algebraic way of defining a pattern
Definition: The set of regular expressions over I (where I is an
input set) is the smallest set S of expressions such that:

I the symbol emptyset ∈ S (that should be a boldface ∅)
I the symbol λ ∈ S (that should be a boldface λ)

I the symbol x ∈ S is a regular expression if x ∈ I ;

I if E1 and E2 are in S , then so are E1E2, E1 ∪ E2 and A∗.

That is, we start with the empty set, λ, and elements of I , then
close off under union, concatenation, and ∗.

I Note that a regular set is a syntactic object: a sequence of
symbols.

I There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix
searches should recognize the syntax . . .

10 / 37

Each regular expression E over I defines a subset of I ∗, denoted
L(E) (the language of E) in the obvious way:

I L(∅) = ∅;
I L(λ) = {λ};
I L(x) = {x};
I L(E1E2) = L(E1)L(E1);
I L(E1 ∪ E2) = L(E1) ∪ L(E2);
I L(E∗) = L(E1)∗.

Examples:
I What’s L(0∗10∗10∗)?
I What’s L((0∗10∗10∗)n)? L(0∗(0∗10∗10∗)∗)?
I L(0∗(0∗10∗10∗)∗) is the language accepted by the parity

automaton!
I If Σ = {a, . . . , z ,A, . . . ,Z , 0, . . . , 9} ∪ Punctuation, what is

Σ∗HalpernΣ∗?
I Punctuation consists of the punctuation symbols (comma,

period, etc.)
I Σ is an abbreviation of a ∪ b ∪ . . . (the union of the symbols in

Σ)
11 / 37

Can you define an automaton that accepts exactly the strings in
Σ∗HalpernΣ∗?

I How many states would you need?

What language is represented by the automaton in the original
example:

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I ((10)∗0∗((110) ∪ (111))∗)∗

I Perhaps clearer: ((0 ∪ 1)∗0 ∪ 111)∗

I It’s not easy to prove this formally!

12 / 37

Can you define an automaton that accepts exactly the strings in
Σ∗HalpernΣ∗?

I How many states would you need?

What language is represented by the automaton in the original
example:

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I ((10)∗0∗((110) ∪ (111))∗)∗

I Perhaps clearer: ((0 ∪ 1)∗0 ∪ 111)∗

I It’s not easy to prove this formally!

12 / 37

Can you define an automaton that accepts exactly the strings in
Σ∗HalpernΣ∗?

I How many states would you need?

What language is represented by the automaton in the original
example:

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I ((10)∗0∗((110) ∪ (111))∗)∗

I Perhaps clearer: ((0 ∪ 1)∗0 ∪ 111)∗

I It’s not easy to prove this formally!

12 / 37

What language is accepted by the following automata:

s0start s1

1

0

0,1

L(1∗)

s0start s1 s2 s3
0 1 0,1

1 0

0,1

L(1 ∪ 01)

13 / 37

What language is accepted by the following automata:

s0start s1

1

0

0,1

L(1∗)

s0start s1 s2 s3
0 1 0,1

1 0

0,1

L(1 ∪ 01)

13 / 37

What language is accepted by the following automata:

s0start s1

1

0

0,1

L(1∗)

s0start s1 s2 s3
0 1 0,1

1 0

0,1

L(1 ∪ 01)

13 / 37

s0start s1 s1 s3

0

1 1

0

0,1 0,1

L(0∗10(0 ∪ 1)∗)

14 / 37

s0start s1 s1 s3

0

1 1

0

0,1 0,1

L(0∗10(0 ∪ 1)∗)

14 / 37

Nondeterministic Finite Automata

So far we’ve considered deterministic finite automata (DFA)

I what happens in a state is completely determined by the input
symbol read

Nondeterministic finite automata allow several possible next states
when an input is read.

Formally, a nondeterministic finite automaton is a tuple
M = (S , I , f , s0,F). All the components are just like a DFA,
except now f : S × I → 2S (before, f : S × I → S).

I if s ′ ∈ f (s, i), then s ′ is a possible next state if the machines
is in state s and sees input i .

15 / 37

We can still use a graph to represent an NFA. There might be
several edges coming out of a state labeled by i ∈ I , or none. In
the example below, there are two edges coming out of s0 labeled 0,
and none coming out of s4 labeled 1.

s0start

s1

s2

s3

s4

0
1

0

0

1

1

0

0

I Can either stay in s0 or move to s2
I On input 111, get stuck in s4 after 11, so 111 not accepted.

16 / 37

I An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x .

I The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:

s0start

s1

s2

s3

s4

0
1

0

0

1

1

0

0

L(0∗01 ∪ 0∗11)

17 / 37

I An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x .

I The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:

s0start

s1

s2

s3

s4

0
1

0

0

1

1

0

0

L(0∗01 ∪ 0∗11)

17 / 37

Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.
I Do we gain extra power from nondeterminism?

I Are there languages that are accepted by an NFA that can’t be
accepted by a DFA?

I Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same
language.

Example:

s0start s1 s0start s1

0

1

0

0,1

0,1

18 / 37

Theorem: Every nondeterministic finite automaton is equivalent
to some deterministic finite automaton.

Proof: Given an NFA M = (S , I , f , s0,F), let
M ′ = (2S , I , f ′, {s0},F ′), where

I f ′(A, i) = {t : t ∈ f (s, i) for some s ∈ A} ∈ 2S

I f : 2S × I → 2S

I F ′ = {A : A ∩ F 6= ∅}
Thus,

I the states in M ′ are subsets of states in M;

I the final states in M ′ are the sets which contain a final state
in M;

I in state A, given input i , the next state consists of all possible
next states from an element in A.

M ′ is deterministic.

I This is called the subset construction.

I The states in M ′ are subsets of states in M.

19 / 37

We want to show that M accepts x iff M ′ accepts x .

I Let x = x1 . . . xk .
I If M accepts x , then there is a sequence of states s0, . . . , sk

such that sk ∈ F and si+1 ∈ f (si , xi).
I That’s what it means for an NFA M to accept x
I s0, . . . , sk is a possible sequence of states that M goes through

on input x
I It’s only one possible sequence: M is an NFA

I Define A0, . . . ,Ak inductively:
A0 = {s0} and Ai+1 = f ′(Ai , xi).

I A0, . . . ,Ak is the sequence of states that M ′ goes through on
input x .

I Remember: a state in M ′ is a set of states in M.
I M ′ is deterministic: this sequence is unique.

I An easy induction shows that si ∈ Ai .
I Therefore sk ∈ Ak , so Ak ∩ F 6= ∅.
I Conclusion: Ak ∈ F ′, so M ′ accepts x .

20 / 37

For the converse, suppose that M ′ accepts x

I Let A0, . . . ,Ak be the sequence of states that M ′ goes
through on input x .

I Since Ak ∩ F 6= ∅, there is some tk ∈ Ak ∩ F .

I By induction, if 1 ≤ j ≤ k , can find tk−j ∈ Ak−j such that
tk−j+1 ∈ f (tk−j , xk−j).

I Since A0 = {s0}, we must have s0 = t0.

I Thus, t0 . . . tk is an “accepting path” for x in M

I Conclusion: M accepts x

21 / 37

Notes:

I Michael Rabin and Dana Scott won a Turing award for
defining NFAs and showing they are equivalent to DFAs

I This construction blows up the number of states:
I |S ′| = 2|S|

I Sometimes you can do better; in general, you can’t

22 / 37

Regular Languages and Finite Automata

Theorem: A language is accepted by a finite automaton iff it is
regular.

First we’ll show that every regular language is accepted by some
finite automaton:

Proof: We proceed by induction on the (length of/structure of)
the description of the regular language. We need to show that

I ∅ is accepted by a finite automaton
I Easy: build an automaton where no input ever reaches a final

state

I λ is accepted by a finite automaton
I Easy: an automaton where the initial state accepts

I each x ∈ I is accepted by a finite automaton
I Easy: an automaton with two states, where only x leads from

s0 to an accepting state.

23 / 37

I if A and B are accepted, so is AB
Proof: Suppose that MA = (SA, I , fA, sA,FA) accepts A and
MB = (SB , I , fB , sB ,FB) accepts B. Suppose that MA and
MB and NFAs, and SA and SB are disjoint (without loss of
generality).

Idea: We hook MA and MB together. Let NFA

MAB = (SA ∪ SB , I , fAB , sA,FAB), where

I FAB =

{
FB ∪ FA if λ ∈ B;
FB otherwise

I t ∈ fAB(s, i) if either
I s ∈ SA and t ∈ fA(s, i), or
I s ∈ SB and t ∈ fB(s, i), or
I s ∈ FA and t ∈ fB(sB , i).

Idea: given input xy ∈ AB, the machine “guesses” when to
switch from running MA to running MB .

I MAB accepts AB.

24 / 37

Proof: There are two parts to this proof:

1. Showing that if x ∈ AB, then x is accepted by MAB .

2. Show that if x is accepted by MAB , then x ∈ AB.

For part 1, suppose that x = ab ∈ AB, where a = a1 . . . ak and
b = b1 . . . bm. Then there exists a sequence of states
s0, . . . , sk ∈ SA and a sequence of states t0, . . . , tm ∈ SB such that

I s0 = sA and t = sB ;

I si+1 ∈ fA(si , ai+1) and ti+1 ∈ fB(ti , bi+1)

I sk ∈ FA and tm ∈ FB .

That means that after reading a, MAB could be in state sk . If
b = λ, MAB accepts a (since sk ∈ FA ⊆ FAB if λ ∈ B). Otherwise,
MAB can continue to t1, . . . , tm when reading b, so it accepts ab
(since tm ∈ FB ⊆ FAB).

25 / 37

For part 2, suppose that x = c1 . . . cn is accepted by MAB . That
means that there is a sequence of states s0, . . . , sn ∈ SA ∪ SB such
that

I s0 = sA
I si+1 ∈ fAB(si , ci+1)

I sn ∈ FAB

If sn ∈ FA, then λ ∈ B, s0, . . . , sn ⊆ SA (since once MAB moves to
a state in SB , it never moves to a state in SA), so x is accepted by
MA. Thus, x ∈ A ⊆ AB.

If sn ∈ FB , let sj be the first state in the sequence in SB . Then
s0, . . . , sj−1 ⊆ SA, sj−1 ∈ FA, so c1 . . . cj−1 is accepted by MA, and
hence is in A. Moreover, sB , sj , . . . , sn ⊆ SB (once MAB is in a
state of SB , it never moves to a state of SA), so cj . . . cn is
accepted by MB , and hence is in B. Thus,
x = (c1 . . . cj−1)(cj . . . cn) ∈ AB.

26 / 37

For part 2, suppose that x = c1 . . . cn is accepted by MAB . That
means that there is a sequence of states s0, . . . , sn ∈ SA ∪ SB such
that

I s0 = sA
I si+1 ∈ fAB(si , ci+1)

I sn ∈ FAB

If sn ∈ FA, then λ ∈ B, s0, . . . , sn ⊆ SA (since once MAB moves to
a state in SB , it never moves to a state in SA), so x is accepted by
MA. Thus, x ∈ A ⊆ AB.
If sn ∈ FB , let sj be the first state in the sequence in SB . Then
s0, . . . , sj−1 ⊆ SA, sj−1 ∈ FA, so c1 . . . cj−1 is accepted by MA, and
hence is in A. Moreover, sB , sj , . . . , sn ⊆ SB (once MAB is in a
state of SB , it never moves to a state of SA), so cj . . . cn is
accepted by MB , and hence is in B. Thus,
x = (c1 . . . cj−1)(cj . . . cn) ∈ AB.

26 / 37

I if A and B are accepted, so is A ∪ B.
Proof: Suppose that MA = (SA, I , fA, sA,FA) accepts A and
MB = (SB , I , fB , sB ,FB) accepts B. Suppose that MA and
MB and NFAs, and SA and SB are disjoint.

Idea: given input x ∈ A ∪ B, the machine “guesses” whether
to run MA or MB .

I MA∪B = (SA ∪ SB ∪ {s0}, I , fA∪B , s0,FA∪B), where
I s0 is a new state, not in SA ∪ SB

I fA∪B(s, i) =

fA(s, i) if s ∈ SA

fB(s, i) if s ∈ SB

fA(sA, i) ∪ fB(sB , i) if s = s0

I FA∪B =

{
FA ∪ FB ∪ {s0} if λ ∈ A ∪ B
FA ∪ FB otherwise.

I MA∪B accepts A ∪ B.

27 / 37

I if A is accepted, so is A∗.
I MA∗ = (SA ∪ {s0}, I , fA∗ , s0,FA ∪ {s0}), where

I s0 is a new state, not in SA;

I fA∗(s, i) =

fA(s, i) if s ∈ SA − FA;
fA(s, i) ∪ fA(sA, i) if s ∈ FA;
fA(sA, i) if s = s0

I MA∗ accepts A∗.
I Homework!

28 / 37

Next we’ll show that every language accepted by a finite
automaton is regular:

Proof: Fix an automaton M with states {s0, . . . , sn}. Can assume
wlog (without loss of generality) that M is deterministic.

I a language is accepted by a DFA iff it is accepted by a NFA.

Let S(si , sj , k) be the set of strings that force M from state si to sj
on a path such that every intermediate state is {s0, . . . , sk}.

I E.g., S(s4, s5, 2) consists of all strings that force M from s4 to
s3 on a path that goes through only s0, s1, and s2 (in any
order, perhaps with repeats).

Note that a string x is accepted by M iff x ∈ S(s0, s, n) for some
final state s. Thus, L(M) is the union over all final states s of
S(s0, s, n).

29 / 37

We will prove by induction on k that S(si , sj , k) is regular.
I Why not just take si = s0?

I We need a stronger induction hypothesis

Base case:

Lemma 1: S(si , sj ,−1) is regular.

Proof: For a string σ to be in S(si , sj ,−1), it must go directly
from si to sj , without going through any intermediate strings.
Thus, σ must be some subset of I (possibly empty) together with
λ if si = sj . Either way, S(si , sj ,−1) is regular.

30 / 37

We will prove by induction on k that S(si , sj , k) is regular.
I Why not just take si = s0?

I We need a stronger induction hypothesis

Base case:

Lemma 1: S(si , sj ,−1) is regular.

Proof: For a string σ to be in S(si , sj ,−1), it must go directly
from si to sj , without going through any intermediate strings.
Thus, σ must be some subset of I (possibly empty) together with
λ if si = sj . Either way, S(si , sj ,−1) is regular.

30 / 37

Lemma 2: If sj 6= sk+1, then S(si , sj , k + 1) =
S(si , sj , k) ∪ S(si , sk+1, k)(S(sk+1, sk+1, k))∗S(sk+1, sj , k).

Proof: If a string σ forces M from si to sJ on a path with
intermediates states all in {s0, . . . , sk+1}, then the path either does
not go through sk+1 at all, so is in S(si , sj , k), or goes through
sk+1 some finite number of times, say m. That is, the path looks
like this:

si . . . sk+1 . . . sk+1 . . . sk+1 . . . sj

where all the states in the . . . part are in {s0, . . . , sk}. Thus, we
can split up the string σ into m + 1 corresponding pieces:

I σ0 that takes M from s0 to sk+1,
I each of σ1, . . . , σm take M from sk+1 back to sk+1

I σm+1 takes M from sk+1 to sj .

Thus,
I σ0 ∈ S(si , sk+1, k)
I σ1, . . . , σm are all in S(sk+1, sk+1, k)
I σm+1 ∈ S(sk+1, sj , k)
I So σ = σ0σ1 . . . σm+1 ∈

S(si , sj , k) ∪ S(si , sk+1, k)(S(sk+1, sk+1, k))∗S(sk+1, sj , k)

31 / 37

Lemma 2: If sj 6= sk+1, then S(si , sj , k + 1) =
S(si , sj , k) ∪ S(si , sk+1, k)(S(sk+1, sk+1, k))∗S(sk+1, sj , k).

Proof: If a string σ forces M from si to sJ on a path with
intermediates states all in {s0, . . . , sk+1}, then the path either does
not go through sk+1 at all, so is in S(si , sj , k), or goes through
sk+1 some finite number of times, say m. That is, the path looks
like this:

si . . . sk+1 . . . sk+1 . . . sk+1 . . . sj

where all the states in the . . . part are in {s0, . . . , sk}. Thus, we
can split up the string σ into m + 1 corresponding pieces:

I σ0 that takes M from s0 to sk+1,
I each of σ1, . . . , σm take M from sk+1 back to sk+1

I σm+1 takes M from sk+1 to sj .

Thus,
I σ0 ∈ S(si , sk+1, k)
I σ1, . . . , σm are all in S(sk+1, sk+1, k)
I σm+1 ∈ S(sk+1, sj , k)
I So σ = σ0σ1 . . . σm+1 ∈

S(si , sj , k) ∪ S(si , sk+1, k)(S(sk+1, sk+1, k))∗S(sk+1, sj , k)
31 / 37

Lemma 3: If sj = sk+1, then
S(si , sj , k + 1) = S(si , sj , k) ∪ S(si , sj , k)(S(sj , sj , k))∗.

Proof: Same idea as previous proof.

Lemma 4: S(si , sj ,N) is regular for all N with −1 ≤ N ≤ n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(s0, s
′, n)

such that s ′ is a final state. Since regular languages are closed
under union, the result follows.

32 / 37

Lemma 3: If sj = sk+1, then
S(si , sj , k + 1) = S(si , sj , k) ∪ S(si , sj , k)(S(sj , sj , k))∗.

Proof: Same idea as previous proof.

Lemma 4: S(si , sj ,N) is regular for all N with −1 ≤ N ≤ n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(s0, s
′, n)

such that s ′ is a final state. Since regular languages are closed
under union, the result follows.

32 / 37

Lemma 3: If sj = sk+1, then
S(si , sj , k + 1) = S(si , sj , k) ∪ S(si , sj , k)(S(sj , sj , k))∗.

Proof: Same idea as previous proof.

Lemma 4: S(si , sj ,N) is regular for all N with −1 ≤ N ≤ n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(s0, s
′, n)

such that s ′ is a final state. Since regular languages are closed
under union, the result follows.

32 / 37

Lemma 3: If sj = sk+1, then
S(si , sj , k + 1) = S(si , sj , k) ∪ S(si , sj , k)(S(sj , sj , k))∗.

Proof: Same idea as previous proof.

Lemma 4: S(si , sj ,N) is regular for all N with −1 ≤ N ≤ n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(s0, s
′, n)

such that s ′ is a final state. Since regular languages are closed
under union, the result follows.

32 / 37

We can use the ideas of this proof to compute the regular language
accepted by an automaton.

s0start s3

s1

s2
0

1

1

0

0

1
0,1

I S(s0, s0,−1) = {λ, 0}; S(s0, s1,−1) = {1}; . . .
I S(s0, s0, 0) = 0∗; S(s1, s0, 0) = 00∗; S(s0, s1, 0) = 0∗1;

S(s1, s1, 0) = 00∗1; . . .
I S(s0, s0, 1) = (0∗(10)∗)∗; . . .
I . . .

We can methodically build up S(s0, s0, 2), which is what we want
(since s3 is unreachable).

33 / 37

A Non-Regular Language
Not every language is regular (which means that not every
language can be accepted by a finite automaton).

Theorem: L = {0n1n : n = 0, 1, 2, . . .} is not regular.

Proof: Suppose, by way of contradiction, that L is regular. Then
there is a DFA M = (S , {0, 1}, f , s0,F) that accepts L. Suppose
that M has N states. Let s0, . . . , s2N be the set of states that M
goes through on input 0N1N

I Thus f (si , 0) = si+1 for i = 0, . . . ,N.

Since M has N states, by the pigeonhole principle (remember
that?), at least two of s0, . . . , sN must be the same. Suppose it’s si
and sj , where i < j , and j − i = t.

Claim: M accepts 0N0t1N , and 0N02t1N , ON03t1N .

Proof: Starting in s0, O i brings the machine to si ; another 0t

bring the machine back to si (since sj = si+t = si); another 0t

bring machine back to si again. After going around the loop for a
while, the can continue to sN and accept. 34 / 37

The Pumping Lemma
The techniques of the previous proof generalize. If M is a DFA and
x is a string accepted by M such that |x | ≥ |S |

I |S | is the number of states; |x | is the length of x

then there are strings u, v , w such that

I x = uvw ,
I |uv | ≤ |S |,
I |v | ≥ 1,
I uv iw is accepted by M, for i = 0, 1, 2,

The proof is the same as on the previous slide.

I x was 0n1n, u = 0i , v = 0t , w = 0N−t−i1N .

We can use the Pumping Lemma to show that many languages are
not regular

I {1n2 : n = 0, 1, 2, . . .}: homework
I {02n1n : n = 0, 1, 2, . . .}: homework
I {1n : n is prime}
I . . .

35 / 37

More Powerful Machines
Finite automata are very simple machines.

I They have no memory
I Roughly speaking, they can’t count beyond the number of

states they have.

Pushdown automata have states and a stack which provides
unlimited memory.

I They can recognize all languages generated by context-free
grammars (CFGs)

I CFGs are typically used to characterize the syntax of
programming languages

I They can recognize the language {0n1n : n = 0, 1, 2, . . .}, but
not the language L′ = {0n1n2n : n = 0, 1, 2, . . .}

Linear bounded automata can recognize L′.
I More generally, they can recognize context-sensitive grammars

(CSGs)
I CSGs are (almost) good enough to characterize the grammar

of real languages (like English)
36 / 37

Most general of all: Turing machine (TM)

I Given a computable language, there is a TM that accepts it.

I This is essentially how we define computability.

If you’re interested in these issues, take CS 4810!

37 / 37

