Patterns and Finite Automata

A *pattern* is a set of objects with a recognizable property.

- In computer science, we're typically interested in patterns that are sequences of character strings
 - ▶ I think "Halpern" a very interesting pattern
 - I may want to find all occurrences of that pattern in a paper
- Other patterns:
 - if followed by any string of characters followed by then
 - all filenames ending with ".doc"

Pattern matching comes up all the time in text search.

A *finite automaton* is a particularly simple computing device that can recognize certain types of patterns, called *regular languages*

The text does not cover finite automata; there is a separate handout on CMS.

Finite Automata

A *finite automaton* is a machine that is always in one of a finite number of states.

- ▶ When it gets some input, it moves from one state to another
 - If I'm in a "sad" state and someone hugs me, I move to a "happy" state
 - If I'm in a "happy" state and someone yells at me, I move to a "sad" state
- Example: A digital watch with "buttons" on the side for changing the time and date, or switching it to "stopwatch" mode, is an automaton
 - What are the states and inputs of this automaton?
- A certain state is denoted the *start* state
 - That's how the automaton starts life
- Other states are denoted *final* state
 - The automaton stops when it reaches a final state
 - (A digital watch has no final state, unless we count running out of battery power.)

Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

- The nodes represent the states of the machine
- The edges are labeled by inputs, and describe how the machine transitions from one state to another

Example:

- There are four states: s_0, s_1, s_2, s_3
 - ▶ s_0 is the start state (denote by "start \rightarrow ", by convention)
 - ▶ s₀ and s₃ are the final states (denoted by double circles, by convention)
- The labeled edges describe the transitions for each input
 - The inputs are either 0 or 1
 - in state s_0 and reads 0, it stays in s_0
 - If the machine is in state s_0 and reads 1, it moves to s_1
 - If the machine is in state s₁ and reads 0, it moves to s₁
 - If the machine is in state s_1 and reads 1, it moves to s_2

What happens on input 00000? 0101010? 010101? 11?

- Some strings move the automaton to a final state; some don't.
- The strings that take it to a final state are *accepted*.

A Parity-Checking Automaton

Here's an automaton that accepts strings of 0s and 1s that have even parity (an even number of 1s). We need two states:

- ▶ s₀: we've seen an even number of 1s so far
- ▶ *s*₁: we've seen an odd number of 1s so far

The transition function is easy:

- If you see a 0, stay where you are; the number of 1s hasn't changed
- If you see a 1, move from s_0 to s_1 , and from s_1 to s_0

Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple $M = (S, I, f, s_0, F)$:

- S is a finite set of states;
- ▶ *I* is a finite input alphabet (e.g. $\{0,1\}, \{a,...,z\}$)
- f is a transition function; $f : S \times I \rightarrow S$
 - F describes what the next state is if the machine is in state s and sees input i ∈ I.
- $s_0 \in S$ is the initial state;
- $F \subseteq S$ is the set of final states.

Example:

•
$$S = \{s_0, s_1, s_2, s_3\}$$

•
$$I = \{0, 1\}$$

•
$$F = \{s_0, s_3\}$$

The transition function f is described by the graph;

•
$$f(s_0, 0) = s_0; f(s_0, 1) = s_1; f(s_1, 0) = s_0; \ldots$$

You should be able to translate back and forth between finite automata and the graphs that describe them.

Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

A language is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that a ∈ A and b ∈ B.
 - **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 - $AB = \{0111, 000, 11111, 1100\}$
 - $\blacksquare BA = \{1110, 11111, 000, 0011\}$
- Define A^{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string

$$\blacktriangleright A^1 = A$$

•
$$A^{n+1} = AA^n$$

 $\blacktriangleright A^* = \cup_{n=0}^{\infty} A^n.$

Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

A language is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that a ∈ A and b ∈ B.
 - **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 - $AB = \{0111, 000, 11111, 1100\}$
 - $\blacksquare BA = \{1110, 11111, 000, 0011\}$
- Define A^{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string

$$\blacktriangleright A^1 = A$$

$$\blacktriangleright A^{n+1} = AA^n$$

►
$$A^* = \bigcup_{n=0}^{\infty} A^n$$
.
► What's $\{0,1\}^n$? $\{0,1\}^*$? $\{11\}^*$?

Regular Expressions

A regular expression is an algebraic way of defining a pattern **Definition**: The set of regular expressions over I (where I is an input set) is the smallest set S of expressions such that:

- ▶ the symbol **emptyset** \in *S* (that should be a boldface \emptyset)
- the symbol $\lambda \in S$ (that should be a boldface λ)
- the symbol $\mathbf{x} \in S$ is a regular expression if $x \in I$;
- if \mathbf{E}_1 and \mathbf{E}_2 are in S, then so are $\mathbf{E}_1\mathbf{E}_2$, $\mathbf{E}_1 \cup \mathbf{E}_2$ and \mathbf{A}^* .

That is, we start with the empty set, λ , and elements of I, then close off under union, concatenation, and *.

- Note that a regular set is a syntactic object: a sequence of symbols.
- There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix searches should recognize the syntax ...

Each regular expression **E** over *I* defines a subset of I^* , denoted L(E) (the *language* of *E*) in the obvious way:

- $L(\emptyset) = \emptyset;$
- $L(\lambda) = \{\lambda\};$
- $L(\mathbf{x}) = \{x\};$
- $L(E_1E_2) = L(E_1)L(E_1);$
- $\blacktriangleright L(\mathsf{E}_1 \cup \mathsf{E}_2) = L(\mathsf{E}_1) \cup L(\mathsf{E}_2);$
- $L(\mathbf{E}^*) = L(E_1)^*$.

Examples:

- What's L(0*10*10*)?
- What's $L((0^*10^*10^*)^n)$? $L(0^*(0^*10^*10^*)^*)$?
- L(0*(0*10*10*)*) is the language accepted by the parity automaton!
- If $\Sigma = \{a, \dots, z, A, \dots, Z, 0, \dots, 9\} \cup Punctuation$, what is $\Sigma^* Halpern\Sigma^*$?
 - Punctuation consists of the punctuation symbols (comma, period, etc.)
 - ▶ Σ is an abbreviation of $a \cup b \cup ...$ (the union of the symbols in Σ)

Can you define an automaton that accepts exactly the strings in $\Sigma^* \textit{Halpern}\Sigma^*?$

How many states would you need?

Can you define an automaton that accepts exactly the strings in $\Sigma^* Halpern\Sigma^*$?

How many states would you need?

What language is represented by the automaton in the original example:

Can you define an automaton that accepts exactly the strings in $\Sigma^* Halpern \Sigma^*?$

How many states would you need?

What language is represented by the automaton in the original example:

- $((10)^*0^*((110) \cup (111))^*)^*$
- Perhaps clearer: $((0 \cup 1)^* 0 \cup 111)^*$
- It's not easy to prove this formally!

What language is accepted by the following automata:

What language is accepted by the following automata:

What language is accepted by the following automata:

 $L(1 \cup 01)$

 $L(0^*10(0\cup 1)^*)$

Nondeterministic Finite Automata

So far we've considered *deterministic* finite automata (DFA)

what happens in a state is completely determined by the input symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nondeterministic finite automaton is a tuple $M = (S, I, f, s_0, F)$. All the components are just like a DFA, except now $f : S \times I \to 2^S$ (before, $f : S \times I \to S$).

If s' ∈ f(s, i), then s' is a possible next state if the machines is in state s and sees input i.

We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by $i \in I$, or none. In the example below, there are two edges coming out of s_0 labeled 0, and none coming out of s_4 labeled 1.

- Can either stay in s₀ or move to s₂
- On input 111, get stuck in s₄ after 11, so 111 not accepted.

- An NFA *M* accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.
- The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

- An NFA *M* accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.
- The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

 $L(\mathbf{0}^*\mathbf{01}\cup\mathbf{0}^*\mathbf{11})$

Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

- Do we gain extra power from nondeterminism?
 - Are there languages that are accepted by an NFA that can't be accepted by a DFA?
 - Somewhat surprising answer: NO!

Define two automata to be *equivalent* if they accept the same language.

Example:

Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (2^S, I, f', \{s_0\}, F')$, where ► $f'(A, i) = \{t : t \in f(s, i) \text{ for some } s \in A\} \in 2^S$ ► $f : 2^S \times I \to 2^S$ ► $F' = \{A : A \cap F \neq \emptyset\}$

Thus,

- the states in M' are subsets of states in M;
- ► the final states in M' are the sets which contain a final state in M;
- in state A, given input i, the next state consists of all possible next states from an element in A.

M' is *deterministic*.

- This is called the *subset* construction.
- The states in M' are subsets of states in M.

We want to show that M accepts x iff M' accepts x.

- Let $x = x_1 \dots x_k$.
- If M accepts x, then there is a sequence of states s₀,..., s_k such that s_k ∈ F and s_{i+1} ∈ f(s_i, x_i).
 - That's what it means for an NFA M to accept x
 - ▶ s₀,..., s_k is a possible sequence of states that M goes through on input x
 - It's only one possible sequence: M is an NFA
- Define A_0, \ldots, A_k inductively: $A_0 = \{s_0\}$ and $A_{i+1} = f'(A_i, x_i)$.
 - ► A₀,..., A_k is the sequence of states that M' goes through on input x.
 - Remember: a state in M' is a set of states in M.
 - ► *M*′ is deterministic: this sequence is unique.
 - An easy induction shows that $s_i \in A_i$.
 - Therefore $s_k \in A_k$, so $A_k \cap F \neq \emptyset$.
 - Conclusion: $A_k \in F'$, so M' accepts x.

For the converse, suppose that M' accepts x

- ► Let A₀,..., A_k be the sequence of states that M' goes through on input x.
- Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.
- ▶ By induction, if $1 \le j \le k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j})$.
- Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.
- Thus, $t_0 \dots t_k$ is an "accepting path" for x in M
- Conclusion: M accepts x

Notes:

- Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs
- This construction blows up the number of states:

•
$$|S'| = 2^{|S|}$$

Sometimes you can do better; in general, you can't

Regular Languages and Finite Automata

Theorem: A language is accepted by a finite automaton iff it is regular.

First we'll show that every regular language is accepted by some finite automaton:

Proof: We proceed by induction on the (length of/structure of) the description of the regular language. We need to show that

- \blacktriangleright Ø is accepted by a finite automaton
 - Easy: build an automaton where no input ever reaches a final state
- λ is accepted by a finite automaton
 - Easy: an automaton where the initial state accepts
- each $x \in I$ is accepted by a finite automaton
 - ► Easy: an automaton with two states, where only *x* leads from *s*₀ to an accepting state.

▶ if A and B are accepted, so is AB
 Proof: Suppose that M_A = (S_A, I, f_A, s_A, F_A) accepts A and M_B = (S_B, I, f_B, s_B, F_B) accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint (without loss of generality).

Idea: We hook M_A and M_B together. Let NFA $M_{AB} = (S_A \cup S_B, I, f_{AB}, s_A, F_{AB})$, where $F_{AB} = \begin{cases} F_B \cup F_A & \text{if } \lambda \in B; \\ F_B & \text{otherwise} \end{cases}$ $t \in f_{AB}(s, i) \text{ if either}$ $s \in S_A \text{ and } t \in f_A(s, i), \text{ or}$ $s \in S_B \text{ and } t \in f_B(s, i), \text{ or}$ $s \in F_A \text{ and } t \in f_B(s, i), \text{ or}$

Idea: given input $xy \in AB$, the machine "guesses" when to switch from running M_A to running M_B .

• M_{AB} accepts AB.

Proof: There are two parts to this proof:

- 1. Showing that if $x \in AB$, then x is accepted by M_{AB} .
- 2. Show that if x is accepted by M_{AB} , then $x \in AB$.

For part 1, suppose that $x = ab \in AB$, where $a = a_1 \dots a_k$ and $b = b_1 \dots b_m$. Then there exists a sequence of states $s_0, \dots, s_k \in S_A$ and a sequence of states $t_0, \dots, t_m \in S_B$ such that

•
$$s_0 = s_A$$
 and $t = s_B$;

▶
$$s_{i+1} \in f_A(s_i, a_{i+1})$$
 and $t_{i+1} \in f_B(t_i, b_{i+1})$

• $s_k \in F_A$ and $t_m \in F_B$.

That means that after reading *a*, M_{AB} could be in state s_k . If $b = \lambda$, M_{AB} accepts *a* (since $s_k \in F_A \subseteq F_{AB}$ if $\lambda \in B$). Otherwise, M_{AB} can continue to t_1, \ldots, t_m when reading *b*, so it accepts *ab* (since $t_m \in F_B \subseteq F_{AB}$).

For part 2, suppose that $x = c_1 \dots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0, \dots, s_n \in S_A \cup S_B$ such that

- $\blacktriangleright s_0 = s_A$
- $\blacktriangleright \ s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- $s_n \in F_{AB}$

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

For part 2, suppose that $x = c_1 \dots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0, \dots, s_n \in S_A \cup S_B$ such that

- ► $s_0 = s_A$
- $\blacktriangleright \ s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- $s_n \in F_{AB}$

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

If $s_n \in F_B$, let s_j be the first state in the sequence in S_B . Then $s_0, \ldots, s_{j-1} \subseteq S_A$, $s_{j-1} \in F_A$, so $c_1 \ldots c_{j-1}$ is accepted by M_A , and hence is in A. Moreover, $s_B, s_j, \ldots, s_n \subseteq S_B$ (once M_{AB} is in a state of S_B , it never moves to a state of S_A), so $c_j \ldots c_n$ is accepted by M_B , and hence is in B. Thus,

 $x = (c_1 \ldots c_{j-1})(c_j \ldots c_n) \in AB.$

if A and B are accepted, so is A ∪ B.
 Proof: Suppose that M_A = (S_A, I, f_A, s_A, F_A) accepts A and M_B = (S_B, I, f_B, s_B, F_B) accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint.

Idea: given input $x \in A \cup B$, the machine "guesses" whether to run M_A or M_B .

 $M_{A\cup B} = (S_A \cup S_B \cup \{s_0\}, I, f_{A\cup B}, s_0, F_{A\cup B}), \text{ where}$ $s_0 \text{ is a new state, not in } S_A \cup S_B$ $f_{A\cup B}(s, i) = \begin{cases} f_A(s, i) & \text{ if } s \in S_A \\ f_B(s, i) & \text{ if } s \in S_B \\ f_A(s_A, i) \cup f_B(s_B, i) & \text{ if } s = s_0 \end{cases}$ $F_{A\cup B} = \begin{cases} F_A \cup F_B \cup \{s_0\} & \text{ if } \lambda \in A \cup B \\ F_A \cup F_B & \text{ otherwise.} \end{cases}$ $M_{A\cup B} \text{ accepts } A \cup B.$

• if A is accepted, so is A^* .

•
$$M_{A^*} = (S_A \cup \{s_0\}, I, f_{A^*}, s_0, F_A \cup \{s_0\})$$
, where

$$\int f_A(s_A,i) \qquad \text{if } s=s_0$$

- ► M_{A*} accepts A*.
 - Homework!

Next we'll show that every language accepted by a finite automaton is regular:

Proof: Fix an automaton M with states $\{s_0, \ldots, s_n\}$. Can assume wlog (without loss of generality) that M is deterministic.

▶ a language is accepted by a DFA iff it is accepted by a NFA.

Let $S(s_i, s_j, k)$ be the set of strings that force M from state s_i to s_j on a path such that every intermediate state is $\{s_0, \ldots, s_k\}$.

► E.g., S(s₄, s₅, 2) consists of all strings that force M from s₄ to s₃ on a path that goes through only s₀, s₁, and s₂ (in any order, perhaps with repeats).

Note that a string x is accepted by M iff $x \in S(s_0, s, n)$ for some final state s. Thus, L(M) is the union over all final states s of $S(s_0, s, n)$.

We will prove by induction on k that $S(s_i, s_j, k)$ is regular.

- Why not just take $s_i = s_0$?
 - We need a stronger induction hypothesis

We will prove by induction on k that $S(s_i, s_j, k)$ is regular.

- Why not just take $s_i = s_0$?
 - We need a stronger induction hypothesis

Base case:

Lemma 1: $S(s_i, s_j, -1)$ is regular.

Proof: For a string σ to be in $S(s_i, s_j, -1)$, it must go directly from s_i to s_j , without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $S(s_i, s_j, -1)$ is regular.

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k)$.

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^*S(s_{k+1}, s_j, k)$. **Proof:** If a string σ forces M from s_i to s_j on a path with intermediates states all in $\{s_0, \ldots, s_{k+1}\}$, then the path either does not go through s_{k+1} at all, so is in $S(s_i, s_j, k)$, or goes through s_{k+1} some finite number of times, say m. That is, the path looks like this:

$$s_i \dots s_{k+1} \dots s_{k+1} \dots s_{k+1} \dots s_j$$

where all the states in the ... part are in $\{s_0, \ldots, s_k\}$. Thus, we can split up the string σ into m + 1 corresponding pieces:

- σ_0 that takes *M* from s_0 to s_{k+1} ,
- each of $\sigma_1, \ldots, \sigma_m$ take M from s_{k+1} back to s_{k+1}
- σ_{m+1} takes *M* from s_{k+1} to s_j .

Thus,

▶
$$\sigma_0 \in S(s_i, s_{k+1}, k)$$

▶ $\sigma_1, ..., \sigma_m$ are all in $S(s_{k+1}, s_{k+1}, k)$
▶ $\sigma_{m+1} \in S(s_{k+1}, s_j, k)$
▶ So $\sigma = \sigma_0 \sigma_1 ... \sigma_{m+1} \in S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k)$

Lemma 4: $S(s_i, s_i, N)$ is regular for all N with $-1 \le N \le n$.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

Lemma 4: $S(s_i, s_j, N)$ is regular for all N with $-1 \le N \le n$.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

The language accepted by M is the union of the sets $S(s_0, s', n)$ such that s' is a final state. Since regular languages are closed under union, the result follows.

We can use the ideas of this proof to compute the regular language accepted by an automaton.

•
$$S(s_0, s_0, -1) = \{\lambda, 0\}; S(s_0, s_1, -1) = \{1\}; \ldots$$

► $S(s_0, s_0, 0) = 0^*$; $S(s_1, s_0, 0) = 00^*$; $S(s_0, s_1, 0) = 0^*1$; $S(s_1, s_1, 0) = 00^*1$; ...

•
$$S(s_0, s_0, 1) = (0^*(10)^*)^*; \dots$$

. . .

We can methodically build up $S(s_0, s_0, 2)$, which is what we want (since s_3 is unreachable).

A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: $L = \{0^n 1^n : n = 0, 1, 2, ...\}$ is not regular.

Proof: Suppose, by way of contradiction, that *L* is regular. Then there is a DFA $M = (S, \{0, 1\}, f, s_0, F)$ that accepts *L*. Suppose that *M* has *N* states. Let s_0, \ldots, s_{2N} be the set of states that *M* goes through on input $0^N 1^N$

▶ Thus $f(s_i, 0) = s_{i+1}$ for i = 0, ..., N. Since *M* has *N* states, by the pigeonhole principle (remember that?), at least two of $s_0, ..., s_N$ must be the same. Suppose it's s_i and s_i , where i < j, and j - i = t.

Claim: M accepts $0^{N}0^{t}1^{N}$, and $0^{N}0^{2t}1^{N}$, $O^{N}0^{3t}1^{N}$.

Proof: Starting in s_0 , O^i brings the machine to s_i ; another 0^t bring the machine back to s_i (since $s_j = s_{i+t} = s_i$); another 0^t bring machine back to s_i again. After going around the loop for a while, the can continue to s_N and accept.

The Pumping Lemma

The techniques of the previous proof generalize. If M is a DFA and x is a string accepted by M such that $|x| \ge |S|$

► |S| is the number of states; |x| is the length of x then there are strings u, v, w such that

- x = uvw,
- ► $|uv| \leq |S|$,
- $|v| \geq 1$,
- $uv^i w$ is accepted by M, for $i = 0, 1, 2, \ldots$

The proof is the same as on the previous slide.

• x was $0^n 1^n$, $u = 0^i$, $v = 0^t$, $w = 0^{N-t-i} 1^N$.

We can use the Pumping Lemma to show that many languages are *not* regular

- $\{1^{n^2}: n = 0, 1, 2, ...\}$: homework
- $\{0^{2n}1^n : n = 0, 1, 2, ...\}$: homework
- $\{1^n : n \text{ is prime}\}$

▶ ...

More Powerful Machines

Finite automata are very simple machines.

- They have no memory
- Roughly speaking, they can't count beyond the number of states they have.

Pushdown automata have states and a *stack* which provides unlimited memory.

- They can recognize all languages generated by context-free grammars (CFGs)
 - CFGs are typically used to characterize the syntax of programming languages
- ► They can recognize the language $\{0^n1^n : n = 0, 1, 2, ...\}$, but not the language $L' = \{0^n1^n2^n : n = 0, 1, 2, ...\}$

Linear bounded automata can recognize L'.

- More generally, they can recognize *context-sensitive grammars* (CSGs)
- CSGs are (almost) good enough to characterize the grammar of real languages (like English)

Most general of all: Turing machine (TM)

- Given a *computable* language, there is a TM that accepts it.
- This is essentially how we define computability.

If you're interested in these issues, take CS 4810!