Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.

- \blacktriangleright In computer science, we're typically interested in patterns that are sequences of character strings
	- \blacktriangleright I think "Halpern" a very interesting pattern
	- \blacktriangleright I may want to find all occurrences of that pattern in a paper
- \triangleright Other patterns:
	- \triangleright if followed by any string of characters followed by then
	- \blacktriangleright all filenames ending with ".doc"

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that can recognize certain types of patterns, called regular languages

 \blacktriangleright The text does not cover finite automata; there is a separate handout on CMS.

Finite Automata

A finite automaton is a machine that is always in one of a finite number of states.

- \triangleright When it gets some input, it moves from one state to another
	- If I'm in a "sad" state and someone hugs me, I move to a "happy" state
	- If I'm in a "happy" state and someone yells at me, I move to a "sad" state
- \triangleright Example: A digital watch with "buttons" on the side for changing the time and date, or switching it to "stopwatch" mode, is an automaton
	- \triangleright What are the states and inputs of this automaton?
- \triangleright A certain state is denoted the start state
	- \triangleright That's how the automaton starts life
- \triangleright Other states are denoted *final* state
	- \triangleright The automaton stops when it reaches a final state
	- \triangleright (A digital watch has no final state, unless we count running out of battery power.)

Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

- \blacktriangleright The nodes represent the states of the machine
- \triangleright The edges are labeled by inputs, and describe how the machine transitions from one state to another

Example:

- There are four states: s_0, s_1, s_2, s_3
	- \triangleright s₀ is the start state (denote by "start \rightarrow ", by convention)
	- \triangleright s₀ and s₃ are the final states (denoted by double circles, by convention)
- \blacktriangleright The labeled edges describe the transitions for each input
	- \blacktriangleright The inputs are either 0 or 1
		- in state s_0 and reads 0, it stays in s_0
		- If the machine is in state s_0 and reads 1, it moves to s_1
		- If the machine is in state s_1 and reads 0, it moves to s_1
		- If the machine is in state s_1 and reads 1, it moves to s_2

What happens on input 00000? 0101010? 010101? 11?

- \triangleright Some strings move the automaton to a final state; some don't.
- \blacktriangleright The strings that take it to a final state are accepted.

A Parity-Checking Automaton

Here's an automaton that accepts strings of 0s and 1s that have even parity (an even number of 1s). We need two states:

- \triangleright s₀: we've seen an even number of 1s so far
- \triangleright s_1 : we've seen an odd number of 1s so far

The transition function is easy:

- If you see a 0, stay where you are; the number of 1s hasn't changed
- If you see a 1, move from s_0 to s_1 , and from s_1 to s_0

Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple $M = (S, I, f, s_0, F)$:

- \triangleright S is a finite set of states:
- I is a finite input alphabet (e.g. $\{0,1\}$, $\{a,\ldots,z\}$)
- If is a transition function: $f : S \times I \rightarrow S$
	- \triangleright f describes what the next state is if the machine is in state s and sees input $i \in I$.
- ► $s_0 \in S$ is the initial state;
- \blacktriangleright \vdash \vdash \subset S is the set of final states.

Example:

$$
\blacktriangleright \ S=\{s_0,s_1,s_2,s_3\}
$$

$$
\blacktriangleright l = \{0,1\}
$$

$$
\blacktriangleright \ \digamma = \{s_0, s_3\}
$$

 \blacktriangleright The transition function f is described by the graph;

$$
\blacktriangleright \ \ f(s_0,0)=s_0; \ f(s_0,1)=s_1; \ f(s_1,0)=s_0; \ \ldots
$$

You should be able to translate back and forth between finite automata and the graphs that describe them.

Describing Languages

The language accepted (or recognized) by an automaton is the set of strings that it accepts.

 \triangleright A *language* is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that $a \in A$ and $b \in B$.
	- **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
		- $AB = \{0111, 000, 11111, 1100\}$
		- \triangleright BA = {1110, 11111, 000, 0011}
- \blacktriangleright Define A^{n+1} inductively:
	- \blacktriangleright $A^0 = {\lambda}$: λ is the empty string

$$
\blacktriangleright A^1 = A
$$

$$
\blacktriangleright A^{n+1} = AA^n
$$

 $A^* = \bigcup_{n=0}^{\infty} A^n$.

Describing Languages

The language accepted (or recognized) by an automaton is the set of strings that it accepts.

 \triangleright A *language* is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that $a \in A$ and $b \in B$.
	- **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
		- $AB = \{0111, 000, 11111, 1100\}$
		- \triangleright BA = {1110, 11111, 000, 0011}
- \blacktriangleright Define A^{n+1} inductively:
	- \blacktriangleright $A^0 = {\lambda}$: λ is the empty string

$$
\blacktriangleright A^1 = A
$$

$$
\blacktriangleright A^{n+1} = AA^n
$$

►
$$
A^* = \bigcup_{n=0}^{\infty} A^n
$$
.
\n► What's {0, 1}ⁿ? {0, 1}^{*}? {11}^{*}?

Regular Expressions

A regular expression is an algebraic way of defining a pattern **Definition:** The set of regular expressions over I (where I is an input set) is the smallest set S of expressions such that:

- \triangleright the symbol **emptyset** \in S (that should be a boldface \emptyset)
- \triangleright the symbol $\lambda \in S$ (that should be a boldface λ)
- **►** the symbol $x \in S$ is a regular expression if $x \in I$;
- ► if E_1 and E_2 are in S, then so are E_1E_2 , $E_1 \cup E_2$ and A^* .

That is, we start with the empty set, λ , and elements of I, then close off under union, concatenation, and ∗.

- \triangleright Note that a regular set is a *syntactic* object: a sequence of symbols.
- \blacktriangleright There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix searches should recognize the syntax . . .

Each regular expression E over I defines a subset of I^* , denoted $L(E)$ (the *language* of E) in the obvious way:

- \blacktriangleright $L(\emptyset) = \emptyset;$
- \blacktriangleright $L(\lambda) = {\lambda};$
- $L(x) = \{x\}$;
- $L(E_1E_2) = L(E_1)L(E_1);$
- \blacktriangleright L(E₁ ∪ E₂) = L(E₁) ∪ L(E₂);
- \blacktriangleright $L(E^*) = L(E_1)^*.$

Examples:

- ► What's $L(0^*10^*10^*)$?
- ► What's $L((0^*10^*10^*)^n)$? $L(0^*(0^*10^*10^*)^*)$?
- ► $L(0^*(0^*10^*10^*)^*)$ is the language accepted by the parity automaton!
- If $\Sigma = \{a, \ldots, z, A, \ldots, Z, 0, \ldots, 9\} \cup$ *Punctuation, what is* Σ [∗]HalpernΣ ∗ ?
	- \triangleright Punctuation consists of the punctuation symbols (comma, period, etc.)
	- \triangleright Σ is an abbreviation of $a ∪ b ∪ ...$ (the union of the symbols in Σ)

Can you define an automaton that accepts exactly the strings in Σ [∗]HalpernΣ ∗ ?

 \blacktriangleright How many states would you need?

Can you define an automaton that accepts exactly the strings in Σ [∗]HalpernΣ ∗ ?

 \blacktriangleright How many states would you need?

What language is represented by the automaton in the original example:

Can you define an automaton that accepts exactly the strings in Σ [∗]HalpernΣ ∗ ?

 \blacktriangleright How many states would you need?

What language is represented by the automaton in the original example:

- ► $((10)^*0^*((110) \cup (111))^*)^*$
- \blacktriangleright Perhaps clearer: $((0 \cup 1)^*0 \cup 111)^*$
- \blacktriangleright It's not easy to prove this formally!

What language is accepted by the following automata:

What language is accepted by the following automata:

 $L(1^*)$

What language is accepted by the following automata:

 $L(1 \cup 01)$

 $L(0^*10(0 \cup 1)^*)$

Nondeterministic Finite Automata

So far we've considered deterministic finite automata (DFA)

 \triangleright what happens in a state is completely determined by the input symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nondeterministic finite automaton is a tuple $M = (S, I, f, s_0, F)$. All the components are just like a DFA, except now $f:S\times I\to 2^S$ (before, $f:S\times I\to S$).

if $s' \in f(s, i)$, then s' is a possible next state if the machines is in state s and sees input i .

We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by $i \in I$, or none. In the example below, there are two edges coming out of s_0 labeled 0, and none coming out of s_4 labeled 1.

- **Can either stay in** s_0 **or move to** s_2
- \triangleright On input 111, get stuck in s_4 after 11, so 111 not accepted.
- An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x .
- \triangleright The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

- An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x .
- \triangleright The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

 $L(0^*01 \cup 0^*11)$

Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

- \triangleright Do we gain extra power from nondeterminism?
	- \triangleright Are there languages that are accepted by an NFA that can't be accepted by a DFA?
	- \triangleright Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same language.

Example:

Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (2^S, I, f', \{s_0\}, F')$, where \blacktriangleright $f'(A,i) = \{t: t \in f(s,i) \text{ for some } s \in A\} \in 2^\mathcal{S}$ \blacktriangleright f : 2^S \times I \rightarrow 2^S \blacktriangleright $F' = \{A : A \cap F \neq \emptyset\}$

Thus,

- \blacktriangleright the states in M' are subsets of states in M ;
- \blacktriangleright the final states in M' are the sets which contain a final state in M;
- in state A, given input i, the next state consists of all possible next states from an element in A.

 M' is deterministic.

- \triangleright This is called the *subset* construction.
- The states in M' are subsets of states in M.

We want to show that M accepts x iff M' accepts x .

- let $x = x_1 \dots x_k$.
- If M accepts x, then there is a sequence of states s_0, \ldots, s_k such that $s_k \in F$ and $s_{i+1} \in f(s_i, x_i)$.
	- \triangleright That's what it means for an NFA M to accept x
	- \triangleright s_0, \ldots, s_k is a possible sequence of states that M goes through on input x
		- It's only one possible sequence: M is an NFA
- \blacktriangleright Define A_0, \ldots, A_k inductively: $A_0 = \{s_0\}$ and $A_{i+1} = f'(A_i, x_i)$.
	- \blacktriangleright A_0, \ldots, A_k is the sequence of states that M' goes through on input x .
		- Remember: a state in M' is a set of states in M .
		- \blacktriangleright M' is deterministic: this sequence is unique.
	- An easy induction shows that $s_i \in A_i$.
	- **F** Therefore s_k ∈ A_k , so $A_k \cap F \neq \emptyset$.
	- ► Conclusion: $A_k \in F'$, so M' accepts x.

For the converse, suppose that M' accepts x

- In Let A_0, \ldots, A_k be the sequence of states that M' goes through on input x .
- **►** Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.
- ► By induction, if $1 \leq j \leq k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j}).$
- Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.
- In Thus, $t_0 \ldots t_k$ is an "accepting path" for x in M
- \triangleright Conclusion: M accepts x

Notes:

- ▶ Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs
- \triangleright This construction blows up the number of states:

$$
\blacktriangleright |S'| = 2^{|S|}
$$

 \triangleright Sometimes you can do better; in general, you can't

Regular Languages and Finite Automata

Theorem: A language is accepted by a finite automaton iff it is regular.

First we'll show that every regular language is accepted by some finite automaton:

Proof: We proceed by induction on the (length of/structure of) the description of the regular language. We need to show that

- \triangleright \emptyset is accepted by a finite automaton
	- \triangleright Easy: build an automaton where no input ever reaches a final state
- \blacktriangleright λ is accepted by a finite automaton
	- \blacktriangleright Easy: an automaton where the initial state accepts
- \triangleright each $x \in I$ is accepted by a finite automaton
	- Easy: an automaton with two states, where only x leads from s_0 to an accepting state.

 \triangleright if A and B are accepted, so is AB

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ accepts A and $M_B = (S_B, I, f_B, s_B, F_B)$ accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint (without loss of generality).

Idea: We hook M_A and M_B together. Let NFA

 $M_{AB} = (S_A \cup S_B, I, f_{AB}, s_A, F_{AB})$, where \blacktriangleright $F_{AB} = \begin{cases} F_B \cup F_A & \text{if } \lambda \in B; \\ F_B & \text{otherwise} \end{cases}$ F_B otherwise \blacktriangleright $t \in f_{AB}(s, i)$ if either ► $s \in S_A$ and $t \in f_A(s, i)$, or ► $s \in S_B$ and $t \in f_B(s, i)$, or ► $s \in F_A$ and $t \in f_B(s_B, i)$.

Idea: given input $xy \in AB$, the machine "guesses" when to switch from running M_A to running M_B .

 \blacktriangleright M_{AB} accepts AB.

Proof: There are two parts to this proof:

- 1. Showing that if $x \in AB$, then x is accepted by M_{AB} .
- 2. Show that if x is accepted by M_{AB} , then $x \in AB$.

For part 1, suppose that $x = ab \in AB$, where $a = a_1 \ldots a_k$ and $b = b_1 \ldots b_m$. Then there exists a sequence of states $s_0, \ldots, s_k \in S_A$ and a sequence of states $t_0, \ldots, t_m \in S_B$ such that

$$
\blacktriangleright s_0 = s_A \text{ and } t = s_B;
$$

$$
\blacktriangleright s_{i+1} \in f_A(s_i, a_{i+1}) \text{ and } t_{i+1} \in f_B(t_i, b_{i+1})
$$

 \blacktriangleright s_k \in F_A and $t_m \in F_B$.

That means that after reading a, M_{AB} could be in state s_k . If $b = \lambda$, M_{AB} accepts a (since $s_k \in F_A \subseteq F_{AB}$ if $\lambda \in B$). Otherwise, M_{AB} can continue to t_1, \ldots, t_m when reading b, so it accepts ab (since $t_m \in F_B \subseteq F_{AB}$).

For part 2, suppose that $x = c_1 \ldots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0, \ldots, s_n \in S_A \cup S_B$ such that

- \blacktriangleright $s_0 = s_A$
- $s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- \triangleright s_n \in F_{AR}

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

For part 2, suppose that $x = c_1 \ldots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0, \ldots, s_n \in S_A \cup S_B$ such that

- \blacktriangleright $s_0 = s_A$
- $s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- \triangleright s_n \in F_{AR}

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

If $s_n \in F_B$, let s_i be the first state in the sequence in S_B . Then $s_0, \ldots, s_{i-1} \subseteq S_A$, $s_{i-1} \in F_A$, so $c_1 \ldots c_{i-1}$ is accepted by M_A , and hence is in A. Moreover, $s_B, s_j, \ldots, s_n \subseteq S_B$ (once M_{AB} is in a state of S_B , it never moves to a state of $S_A)$, so $c_j \ldots c_n$ is accepted by M_B , and hence is in B. Thus, $x = (c_1 \ldots c_{j-1})(c_j \ldots c_n) \in AB$.

 \triangleright if A and B are accepted, so is $A \cup B$. **Proof:** Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ accepts A and

 $M_B = (S_B, I, f_B, s_B, F_B)$ accepts B. Suppose that M_A and $M_{\rm B}$ and NFAs, and $S_{\rm A}$ and $S_{\rm B}$ are disjoint.

Idea: given input $x \in A \cup B$, the machine "guesses" whether to run M_A or M_B .

 $M_{A\cup B} = (S_A \cup S_B \cup \{s_0\}, I, f_{A\cup B}, s_0, F_{A\cup B})$, where ► s_0 is a new state, not in $S_A \cup S_B$ \blacktriangleright $f_{A\cup B}(s, i) =$ $\sqrt{ }$ J \mathcal{L} $f_A(s, i)$ if $s \in S_A$ $f_B(s, i)$ if $s \in S_B$ $f_A(s_A, i) \cup f_B(s_B, i)$ if $s = s_0$ $F_{A\cup B} = \begin{cases} F_A \cup F_B \cup \{s_0\} & \text{if } \lambda \in A \cup B \\ F \cup F \end{cases}$ $F_A \cup F_B$ otherwise.

 $\blacktriangleright M_{A\cup B}$ accepts $A\cup B$.

if A is accepted, so is A^* .

►
$$
M_{A^*} = (S_A \cup \{s_0\}, I, f_{A^*}, s_0, F_A \cup \{s_0\})
$$
, where
\n> > s_0 is a new state, not in S_A ;
\n>▶ $f_{A^*}(s, i) = \begin{cases} f_A(s, i) & \text{if } s \in S_A - F_A; \\ f_A(s, i) \cup f_A(s_A, i) & \text{if } s \in F_A; \\ f_A(s_A, i) & \text{if } s = s_0 \end{cases}$

 $ightharpoonup M_{A^*}$ accepts A^* .

 \blacktriangleright Homework!

Next we'll show that every language accepted by a finite automaton is regular:

Proof: Fix an automaton M with states $\{s_0, \ldots, s_n\}$. Can assume wlog (without loss of generality) that M is deterministic.

 \triangleright a language is accepted by a DFA iff it is accepted by a NFA.

Let $S(s_{i},s_{j},k)$ be the set of strings that force M from state s_{i} to s_{j} on a path such that every intermediate state is $\{s_0, \ldots, s_k\}$.

E.g., $S(s_4, s_5, 2)$ consists of all strings that force M from s_4 to s_3 on a path that goes through only s_0 , s_1 , and s_2 (in any order, perhaps with repeats).

Note that a string x is accepted by M iff $x \in S(s_0, s, n)$ for some final state s. Thus, $L(M)$ is the union over all final states s of $S(s_0, s, n)$.

We will prove by induction on k that $\mathcal{S}(\mathsf{s}_i,\mathsf{s}_j,k)$ is regular.

- \blacktriangleright Why not just take $s_i = s_0$?
	- \triangleright We need a stronger induction hypothesis

We will prove by induction on k that $\mathcal{S}(\mathsf{s}_i,\mathsf{s}_j,k)$ is regular.

 \blacktriangleright Why not just take $s_i = s_0$?

 \triangleright We need a stronger induction hypothesis

Base case:

Lemma 1: $S(s_i,s_j,-1)$ is regular.

Proof: For a string σ to be in $S(s_i,s_j,-1)$, it must go directly from s_i to s_j , without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $\mathcal{S}(s_i, s_j, -1)$ is regular.

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i,s_j,k+1) =$ $S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k) (S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k).$

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i,s_j,k+1) =$ $S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k) (S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k).$ **Proof:** If a string σ forces M from s_i to s_j on a path with intermediates states all in $\{s_0, \ldots, s_{k+1}\}\$, then the path either does not go through s_{k+1} at all, so is in $\mathcal{S} (s_i,s_j,k)$, or goes through s_{k+1} some finite number of times, say m. That is, the path looks like this:

 $s_i \ldots s_{k+1} \ldots s_{k+1} \ldots s_{k+1} \ldots s_j$

where all the states in the ... part are in $\{s_0, \ldots, s_k\}$. Thus, we can split up the string σ into $m+1$ corresponding pieces:

- \triangleright σ_0 that takes M from s_0 to s_{k+1} ,
- **E** each of $\sigma_1, \ldots, \sigma_m$ take M from s_{k+1} back to s_{k+1}
- \triangleright σ_{m+1} takes M from s_{k+1} to s_j .

Thus,

▶
$$
\sigma_0 \in S(s_i, s_{k+1}, k)
$$

\n▶ $\sigma_1, ..., \sigma_m$ are all in $S(s_{k+1}, s_{k+1}, k)$
\n▶ $\sigma_{m+1} \in S(s_{k+1}, s_j, k)$
\n▶ So $\sigma = \sigma_0 \sigma_1 ... \sigma_{m+1} \in$
\n $S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k) (S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k)$

Lemma 4: $S(s_i,s_j,N)$ is regular for all N with $-1\leq N\leq n.$

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

Lemma 4: $S(s_i,s_j,N)$ is regular for all N with $-1\leq N\leq n.$

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

The language accepted by M is the union of the sets $S({\sf s}_0,{\sf s}',{\sf n})$ such that s' is a final state. Since regular languages are closed under union, the result follows.

We can use the ideas of this proof to compute the regular language accepted by an automaton.

\n- ▶
$$
S(s_0, s_0, -1) = \{\lambda, 0\}; S(s_0, s_1, -1) = \{1\}; \ldots
$$
\n- ▶ $S(s_0, s_0, 0) = 0^*$; $S(s_1, s_0, 0) = 00^*$; $S(s_0, s_1, 0) = 0^*$ 1; $S(s_1, s_1, 0) = 00^*1$; \ldots
\n- ▶ $S(s_0, s_0, 1) = (0^*(10)^*)^*$; \ldots
\n- ▶ \ldots
\n

We can methodically build up $S(s_0, s_0, 2)$, which is what we want (since s_3 is unreachable).

A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: $L = \{0^n1^n : n = 0, 1, 2, ...\}$ is not regular.

Proof: Suppose, by way of contradiction, that L is regular. Then there is a DFA $M = (S, \{0, 1\}, f, s_0, F)$ that accepts L. Suppose that M has N states. Let s_0, \ldots, s_{2N} be the set of states that M goes through on input $0^{\mathsf{N}}1^{\mathsf{N}}$

In Thus $f(s_i, 0) = s_{i+1}$ for $i = 0, \ldots, N$.

Since M has N states, by the pigeonhole principle (remember that?), at least two of s_0, \ldots, s_N must be the same. Suppose it's s_i and s_j , where $i < j$, and $j - i = t$.

Claim: *M* accepts $0^{N}0^{t}1^{N}$, and $0^{N}0^{2t}1^{N}$, $0^{N}0^{3t}1^{N}$.

Proof: Starting in s_0 , O^i brings the machine to s_i ; another 0^t bring the machine back to s_i (since $s_i = s_{i+t} = s_i$); another 0^t bring machine back to s_i again. After going around the loop for a while, the can continue to s_N and accept. $\frac{34}{37}$

The Pumping Lemma

The techniques of the previous proof generalize. If M is a DFA and x is a string accepted by M such that $|x| \ge |S|$

 \blacktriangleright $|S|$ is the number of states; $|x|$ is the length of x then there are strings u , v , w such that

- \blacktriangleright $x = uvw$.
- \blacktriangleright |uv| \leq |S|,
- $|v| > 1$,
- \blacktriangleright uvⁱw is accepted by M, for $i = 0, 1, 2, \ldots$

The proof is the same as on the previous slide.

► x was 0^n1^n , $u = 0^i$, $v = 0^t$, $w = 0^{N-t-i}1^N$.

We can use the Pumping Lemma to show that many languages are not regular

$$
\blacktriangleright \{1^{n^2}: n = 0, 1, 2, \ldots\} : \text{homework}
$$

$$
\blacktriangleright \{0^{2n}1^n : n = 0, 1, 2, \ldots\} : \text{homework}
$$

 \blacktriangleright {1ⁿ : n is prime}

 \blacktriangleright

More Powerful Machines

Finite automata are very simple machines.

- \blacktriangleright They have no memory
- \triangleright Roughly speaking, they can't count beyond the number of states they have.

Pushdown automata have states and a stack which provides unlimited memory.

- \blacktriangleright They can recognize all languages generated by context-free grammars (CFGs)
	- \triangleright CFGs are typically used to characterize the syntax of programming languages
- They can recognize the language $\{0^n1^n : n = 0, 1, 2, \ldots\}$, but not the language $L' = \{0^n 1^n 2^n : n = 0, 1, 2, ...\}$

Linear bounded automata can recognize L'.

- \triangleright More generally, they can recognize context-sensitive grammars (CSGs)
- \triangleright CSGs are (almost) good enough to characterize the grammar of real languages (like English)

Most general of all: Turing machine (TM)

- \triangleright Given a computable language, there is a TM that accepts it.
- \triangleright This is essentially how we define computability.

If you're interested in these issues, take CS 4810!