
Regular Languages and Finite
Automata

Theorem: Every regular language is accepted by some
finite automaton.

Proof: We proceed by induction on the (length of/structure
of) the description of the regular language. We need to
show that

• ∅ is accepted by a finite automaton

◦ Easy: build an automaton where no input ever
reaches a final state

• λ is accepted by a finite automaton

◦ Easy: an automaton where the initial state accepts

• each x ∈ I is accepted by a finite automaton

◦ Easy: an automaton with two states, where x leads
from s0 to a final state.

• if A and B are accepted, so is AB
Proof: Suppose that MA = (SA, I, fA, sA, FA) ac-
cepts A and MB = (SB, I, fB, sB, FB) accepts B.
Suppose that MA and MB and NFAs, and SA and SB

are disjoint (without loss of generality).

Idea: We hook MA and MB together.

1

◦ Let NFS MAB = (SA∪SB, I, fAB, sA, F+
B), where

∗ F+
B =


FB ∪ FA if λ ∈ B;
FB otherwise

∗ t ∈ fAB(s, i) if either

· s ∈ SA and t ∈ fA(s), or

· s ∈ SB and t ∈ fB(s), or

· s ∈ FA and t ∈ fB(sB).

Idea: given input xy ∈ AB, the machine “guesses”
when to switch from running MA to running MB.

◦ MAB accepts AB.

• if A and B are accepted, so is A ∪ B.

◦ MA∪B = (SA∪SB∪{s0}, I, fA∪B, s0, FA∪B), where

∗ s0 is a new state, not in SA ∪ SB

∗ fA∪B(s) =



fA(s) if s ∈ SA

fB(s) if s ∈ SB

fA(sA) ∪ fB(sB) if s = s0

∗ FA∪B =


FA ∪ FB ∪ {s0} if λ ∈ A ∪ B
FA ∪ FB otherwise.

◦ MA∪B accepts A ∪ B.

2

• if A is accepted, so is A∗.

◦ MA∗ = (SA ∪ {s0}, I, fA∗, s0, FA ∪ {s0}), where

∗ s0 is a new state, not in SA;

∗ fA∗(s) =



fA(s) if s ∈ SA − FA;
fA(s) ∪ fA(sA) if s ∈ FA;
fA(sA) if s = s0

◦ MA∗ accepts A∗.

3

A Non-Regular Language

Not every language is regular (which means that not every
language can be accepted by a finite automaton).

Theorem: L = {0n1n : n = 0, 1, 2, . . .} is not regular.

Proof: Suppose, by way of contradiction, that L is reg-
ular. Then there is a DFA M = (S, {0, 1}, f, s0, F) that
accepts L. Suppose that M has N states. Let s0, . . . , s2N

be the set of states that M goes through on input 0N1N

• Thus f (si, 0) = si+1 for i = 0, . . . , N .

Since M has N states, by the pigeonhole principle (re-
member that?), at least two of s0, . . . , sN must be the
same. Suppose it’s si and sj, where i < j, and j − i = t.

Claim: M accepts 0N0t1N , and 0N02t1N , ON03t1N .

Proof: Starting in s0, Oi brings the machine to si; an-
other 0t bring the machine back to si (since sj = si+t =
si); another 0t bring machine back to si again. After go-
ing around the loop for a while, the can continue to sN

and accept.

4

The Pumping Lemma

The techniques of the previous proof generalize. If M is a
DFA and x is a string accepted by M such that |x| ≥ |S|
• |S| is the number of states; |x| is the length of x

then there are strings u, v, w such that

• x = uvw,

• |uv| ≤ |S|,
• |v| ≥ 1,

• uviw is accepted by M , for i = 0, 1, 2,

The proof is the same as on the previous slide.

• x was 0n1n, u = 0i, v = 0t, w = 0N−t−i1N .

We can use the Pumping Lemma to show that many lan-
gauges are not regular

• {1n2
: n = 0, 1, 2, . . .}: homework

• {02n1n : n = 0, 1, 2, . . .}: homework

• {1n : n is prime}
• . . .

5

More Powerful Machines

Finite automata are very simple machines.

• They have no memory

• Roughly speaking, they can’t count beyond the num-
ber of states they have.

Pushdown automata have states and a stack which pro-
vides unlimited memory.

• They can recognize all languages generated by context-
free grammars (CFGs)

◦ CFGs are typically used to characterize the syntax
of programming languages

• They can recognize the language {0n1n : n = 0, 1, 2, . . .},
but not the language L′ = {0n1n2n : n = 0, 1, 2, . . .}

Linear bounded automata can recognize L′.

• More generally, they can recognize context-sensitive
grammars (CSGs)

• CSGs are (almost) good enough to characterize the
grammar of real langugaes (like English)

6

Most general of all: Turing machine (TM)

• Given a computable language, there is a TM that
accepts it.

• This is essentially how we define computability.

If you’re interested in these issues, take CS 3810!

7

Coverage of Final

• everything covered by the first prelim

◦ emphasis on more recent material

• Chapter 4: Fundamental Counting Methods

◦ Permutations and combinations

◦ Combinatorial identities

◦ Pascal’s triangle

◦ Binomial Theorem (but not multinomial theorem)

◦ Balls and urns

◦ Inclusion-exclusion

◦ Pigeonhole principle

• Chapter 6: Probability:

◦ 6.1–6.5 (but not inverse binomial distribution)

◦ basic definitions: probability space, events

◦ conditional probability, independence, Bayes Thm.

◦ random variables

◦ uniform and binomial distribution

◦ expected value and variance

8

• Chapter 7: Logic:

◦ 7.1–7.4, 7.6, 7.7; *not* 7.5

◦ translating from English to propositional (or first-
order) logic

◦ truth tables and axiomatic proofs

◦ algorithm verification

◦ first-order logic

• Chapter 3: Graphs and Trees

◦ basic terminology: digraph, dag, degree, multi-
graph, path, connected component, clique

◦ Eulerian and Hamiltonian paths

∗ algorithm for telling if graph has Eulerian path

◦ BFS and DFS

◦ bipartite graphs

◦ graph coloring and chromatic number

◦ graph isomorphism

• Finite State Automata

◦ describing finite state automata

◦ regular langauges and finite state automata

◦ nondeterministic vs. deterministic automata

◦ pumping lemma (understand what it’s saying)

9

Some Bureuacracy

• The final is on Friday, May 15, 2-4:30 PM, in Olin 155

• If you have a conflict and haven’t told me, let me know
now

◦ Also tell me the courses and professors involved
(with emails)

◦ Also tell the other professors

• Office hours go on as usual during study week, but
check the course web site soon.

◦ There may be small changes to accommodate the
TA’s exams

• There will be two review sessions: May 12 (7 PM)
and May 13 (4:45)

10

Ten Powerful Ideas

• Counting: Count without counting (combinatorics)

• Induction: Recognize it in all its guises.

• Exemplification: Find a sense in which you can
try out a problem or solution on small examples.

• Abstraction: Abstract away the inessential features
of a problem.

◦ One possible way: represent it as a graph

• Modularity: Decompose a complex problem into
simpler subproblems.

• Representation: Understand the relationships be-
tween different possible representations of the same
information or idea.

◦ Graphs vs. matrices vs. relations

• Refinement: The best solutions come from a pro-
cess of repeatedly refining and inventing alternative
solutions.

• Toolbox: Build up your vocabulary of abstract struc-
tures.

11

• Optimization: Understand which improvements are
worth it.

• Probabilistic methods: Flipping a coin can be
surprisingly helpful!

12

Connections: Random Graphs

Suppose we have a random graph with n vertices. How
likely is it to be connected?

• What is a random graph?

◦ If it has n vertices, there are C(n, 2) possible edges,
and 2C(n,2) possible graphs. What fraction of them
is connected?

◦ One way of thinking about this. Build a graph
using a random process, that puts each edge in
with probability 1/2.

• Given three vertices a, b, and c, what’s the probability
that there is an edge between a and b and between b
and c? 1/4

• What is the probability that there is no path of length
2 between a and c? (3/4)n−2

• What is the probability that there is a path of length
2 between a and c? 1 − (3/4)n−2

• What is the probability that there is a path of length 2
between a and every other vertex? > (1−(3/4)n−2)n−1

13

Now use the binomial theorem to compute (1−(3/4)n−2)n−1

(1 − (3/4)n−2)n−1

= 1 − (n − 1)(3/4)n−2 + C(n − 1, 2)(3/4)2(n−2) + · · ·

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a
random graph will be connected.

Theorem: [Fagin, 1976] If P is any property express-
ible in first-order logic, it is either true in almost all
graphs, or false in almost all graphs.

This is called a 0-1 law.

14

Connection: First-order Logic

Suppose you wanted to query a database. How do you
do it?

Modern database query language date back to SQL (struc-
tured query language), and are all based on first-order
logic.

• The idea goes back to Ted Codd, who invented the
notion of relational databases.

Suppose you’re a travel agent and want to query the air-
line database about whether there are flights from Ithaca
to Santa Fe.

• How are cities and flights between them represented?

• How do we form this query?

You’re actually asking whether there is a path from Ithaca
to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!

15

(A Little Bit on) NP

(No details here; just a rough sketch of the ideas. Take
CS 3810/4820 if you want more.)

NP = nondeterministic polynomial time

• a language (set of strings) L is in NP if, for each x ∈
L, you can guess a witness y showing that x ∈ L and
quickly (in polynomial time) verify that it’s correct.

• Examples:

◦ Does a graph have a Hamiltonian path?

∗ guess a Hamiltonian path

◦ Is a formula satisfiable?

∗ guess a satisfying assignment

◦ Is there a schedule that satisfies certain constraints?

◦ . . .

Formally, L is in NP if there exists a language L′ such
that

1. x ∈ L iff there exists a y such that (x, y) ∈ L′, and

2. checking if (x, y) ∈ L′ can be done in polynomial time

16

NP-completeness

• A problem is NP-hard if every NP problem can be
reduced to it.

A problem is NP-complete if it is in NP and NP-hard

• Intuitively, if it is one of the hardest problems in NP.

There are lots of problems known to be NP-complete

• If any NP complete problem is doable in polynomial
time, then they all are.

◦ Hamiltonian path

◦ satisfiability

◦ scheduling

◦ . . .

• If you can prove P = NP, you’ll get a Turing award.

17

