Regular Languages and Finite Automata

Theorem: Every regular language is accepted by some finite automaton.

Proof: We proceed by induction on the (length of/structure of) the description of the regular language. We need to show that

- \emptyset is accepted by a finite automaton
- Easy: build an automaton where no input ever reaches a final state
- λ is accepted by a finite automaton
- Easy: an automaton where the initial state accepts
- each $x \in I$ is accepted by a finite automaton
- Easy: an automaton with two states, where x leads from s_{0} to a final state.
- if A and B are accepted, so is $A B$

Proof: Suppose that $M_{A}=\left(S_{A}, I, f_{A}, s_{A}, F_{A}\right)$ accepts A and $M_{B}=\left(S_{B}, I, f_{B}, s_{B}, F_{B}\right)$ accepts B. Suppose that M_{A} and M_{B} and NFAs, and S_{A} and S_{B} are disjoint (without loss of generality).

Idea: We hook M_{A} and M_{B} together.

- Let NFS $M_{A B}=\left(S_{A} \cup S_{B}, I, f_{A B}, s_{A}, F_{B}^{+}\right)$, where $* F_{B}^{+}= \begin{cases}F_{B} \cup F_{A} & \text { if } \lambda \in B ; \\ F_{B} & \text { otherwise }\end{cases}$
$* t \in f_{A B}(s, i)$ if either
. $s \in S_{A}$ and $t \in f_{A}(s)$, or
. $s \in S_{B}$ and $t \in f_{B}(s)$, or
. $s \in F_{A}$ and $t \in f_{B}\left(s_{B}\right)$.
Idea: given input $x y \in A B$, the machine "guesses" when to switch from running M_{A} to running M_{B}.
- $M_{A B}$ accepts $A B$.
- if A and B are accepted, so is $A \cup B$.
- $M_{A \cup B}=\left(S_{A} \cup S_{B} \cup\left\{s_{0}\right\}, I, f_{A \cup B}, s_{0}, F_{A \cup B}\right)$, where * s_{0} is a new state, not in $S_{A} \cup S_{B}$
$* f_{A \cup B}(s)= \begin{cases}f_{A}(s) & \text { if } s \in S_{A} \\ f_{B}(s) & \text { if } s \in S_{B} \\ f_{A}\left(s_{A}\right) \cup f_{B}\left(s_{B}\right) & \text { if } s=s_{0}\end{cases}$
$* F_{A \cup B}= \begin{cases}F_{A} \cup F_{B} \cup\left\{s_{0}\right\} & \text { if } \lambda \in A \cup B \\ F_{A} \cup F_{B} & \text { otherwise. }\end{cases}$
- $M_{A \cup B}$ accepts $A \cup B$.
- if A is accepted, so is A^{*}.
- $M_{A^{*}}=\left(S_{A} \cup\left\{s_{0}\right\}, I, f_{A^{*}}, s_{0}, F_{A} \cup\left\{s_{0}\right\}\right)$, where
* s_{0} is a new state, not in S_{A};
$* f_{A^{*}}(s)= \begin{cases}f_{A}(s) & \text { if } s \in S_{A}-F_{A} ; \\ f_{A}(s) \cup f_{A}\left(s_{A}\right) & \text { if } s \in F_{A} ; \\ f_{A}\left(s_{A}\right) & \text { if } s=s_{0}\end{cases}$
- $M_{A^{*}}$ accepts A^{*}.

A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: $L=\left\{0^{n} 1^{n}: n=0,1,2, \ldots\right\}$ is not regular.
Proof: Suppose, by way of contradiction, that L is regular. Then there is a DFA $M=\left(S,\{0,1\}, f, s_{0}, F\right)$ that accepts L. Suppose that M has N states. Let $s_{0}, \ldots, s_{2 N}$ be the set of states that M goes through on input $0^{N} 1^{N}$

- Thus $f\left(s_{i}, 0\right)=s_{i+1}$ for $i=0, \ldots, N$.

Since M has N states, by the pigeonhole principle (remember that?), at least two of s_{0}, \ldots, s_{N} must be the same. Suppose it's s_{i} and s_{j}, where $i<j$, and $j-i=t$.
Claim: M accepts $0^{N} 0^{t} 1^{N}$, and $0^{N} 0^{2 t} 1^{N}, O^{N} 0^{3 t} 1^{N}$.
Proof: Starting in s_{0}, O^{i} brings the machine to s_{i}; another 0^{t} bring the machine back to s_{i} (since $s_{j}=s_{i+t}=$ s_{i}); another 0^{t} bring machine back to s_{i} again. After going around the loop for a while, the can continue to s_{N} and accept.

The Pumping Lemma

The techniques of the previous proof generalize. If M is a DFA and x is a string accepted by M such that $|x| \geq|S|$

- $|S|$ is the number of states; $|x|$ is the length of x then there are strings u, v, w such that
- $x=u v w$,
- $|u v| \leq|S|$,
- $|v| \geq 1$,
- $u v^{i} w$ is accepted by M, for $i=0,1,2, \ldots$

The proof is the same as on the previous slide.

- x was $0^{n} 1^{n}, u=0^{i}, v=0^{t}, w=0^{N-t-i} 1^{N}$.

We can use the Pumping Lemma to show that many langauges are not regular

- $\left\{1^{n^{2}}: n=0,1,2, \ldots\right\}$: homework
- $\left\{0^{2 n} 1^{n}: n=0,1,2, \ldots\right\}$: homework
- $\left\{1^{n}: n\right.$ is prime $\}$
- ...

More Powerful Machines

Finite automata are very simple machines.

- They have no memory
- Roughly speaking, they can't count beyond the number of states they have.

Pushdown automata have states and a stack which provides unlimited memory.

- They can recognize all languages generated by contextfree grammars (CFGs)
- CFGs are typically used to characterize the syntax of programming languages
- They can recognize the language $\left\{0^{n} 1^{n}: n=0,1,2, \ldots\right\}$, but not the language $L^{\prime}=\left\{0^{n} 1^{n} 2^{n}: n=0,1,2, \ldots\right\}$

Linear bounded automata can recognize L^{\prime}.

- More generally, they can recognize context-sensitive grammars (CSGs)
- CSGs are (almost) good enough to characterize the grammar of real langugaes (like English)

Most general of all: Turing machine (TM)

- Given a computable language, there is a TM that accepts it.
- This is essentially how we define computability.

If you're interested in these issues, take CS 3810!

Coverage of Final

- everything covered by the first prelim - emphasis on more recent material
- Chapter 4: Fundamental Counting Methods
- Permutations and combinations
- Combinatorial identities
- Pascal's triangle
- Binomial Theorem (but not multinomial theorem)
- Balls and urns
- Inclusion-exclusion
- Pigeonhole principle
- Chapter 6: Probability:
- 6.1-6.5 (but not inverse binomial distribution)
- basic definitions: probability space, events
- conditional probability, independence, Bayes Thm.
o random variables
- uniform and binomial distribution
- expected value and variance
- Chapter 7: Logic:
- 7.1-7.4, 7.6, 7.7; *not* 7.5
- translating from English to propositional (or firstorder) logic
- truth tables and axiomatic proofs
- algorithm verification
- first-order logic
- Chapter 3: Graphs and Trees
- basic terminology: digraph, dag, degree, multigraph, path, connected component, clique
- Eulerian and Hamiltonian paths
* algorithm for telling if graph has Eulerian path
- BFS and DFS
- bipartite graphs
- graph coloring and chromatic number
- graph isomorphism
- Finite State Automata
- describing finite state automata
- regular langauges and finite state automata
o nondeterministic vs. deterministic automata
- pumping lemma (understand what it's saying)

Some Bureuacracy

- The final is on Friday, May 15, 2-4:30 PM, in Olin 155
- If you have a conflict and haven't told me, let me know now
- Also tell me the courses and professors involved (with emails)
- Also tell the other professors
- Office hours go on as usual during study week, but check the course web site soon.
- There may be small changes to accommodate the TA's exams
- There will be two review sessions: May 12 (7 PM) and May 13 (4:45)

Ten Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- One possible way: represent it as a graph
- Modularity: Decompose a complex problem into simpler subproblems.
- Representation: Understand the relationships between different possible representations of the same information or idea.
- Graphs vs. matrices vs. relations
- Refinement: The best solutions come from a process of repeatedly refining and inventing alternative solutions.
- Toolbox: Build up your vocabulary of abstract structures.
- Optimization: Understand which improvements are worth it.
- Probabilistic methods: Flipping a coin can be surprisingly helpful!

Connections: Random Graphs

Suppose we have a random graph with n vertices. How likely is it to be connected?

- What is a random graph?
- If it has n vertices, there are $C(n, 2)$ possible edges, and $2^{C(n, 2)}$ possible graphs. What fraction of them is connected?
- One way of thinking about this. Build a graph using a random process, that puts each edge in with probability $1 / 2$.
- Given three vertices a, b, and c, what's the probability that there is an edge between a and b and between b and c ? $1 / 4$
- What is the probability that there is no path of length 2 between a and c ? $(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between a and c ? $1-(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between a and every other vertex? > $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

Now use the binomial theorem to compute $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

$$
\begin{aligned}
& \left(1-(3 / 4)^{n-2}\right)^{n-1} \\
= & 1-(n-1)(3 / 4)^{n-2}+C(n-1,2)(3 / 4)^{2(n-2)}+\cdots
\end{aligned}
$$

For sufficiently large n, this will be (just about) 1 .
Bottom line: If n is large, then it is almost certain that a random graph will be connected.

Theorem: [Fagin, 1976] If P is any property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.

This is called a 0-1 law.

Connection: First-order Logic

Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

- The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you're a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

- How are cities and flights between them represented?
- How do we form this query?

You're actually asking whether there is a path from Ithaca to Santa Fe in the graph.

- This fact cannot be expressed in first-order logic!

(A Little Bit on) NP

(No details here; just a rough sketch of the ideas. Take CS 3810/4820 if you want more.)
$\mathrm{NP}=$ nondeterministic polynomial time

- a language (set of strings) L is in NP if, for each $x \in$ L, you can guess a witness y showing that $x \in L$ and quickly (in polynomial time) verify that it's correct.
- Examples:
- Does a graph have a Hamiltonian path?
* guess a Hamiltonian path
- Is a formula satisfiable?
* guess a satisfying assignment
- Is there a schedule that satisfies certain constraints?
- ...

Formally, L is in NP if there exists a language L^{\prime} such that

1. $x \in L$ iff there exists a y such that $(x, y) \in L^{\prime}$, and
2. checking if $(x, y) \in L^{\prime}$ can be done in polynomial time

NP-completeness

- A problem is NP-hard if every NP problem can be reduced to it.

A problem is NP-complete if it is in NP and NP-hard

- Intuitively, if it is one of the hardest problems in NP.

There are lots of problems known to be NP-complete

- If any NP complete problem is doable in polynomial time, then they all are.
- Hamiltonian path
- satisfiability
- scheduling

○...

- If you can prove $\mathrm{P}=\mathrm{NP}$, you'll get a Turing award.

