
Tautologies

A truth assignment is an assignment of T or F to every
proposition.

• How hard is it to check if a formula is true under a
given truth assignment?

• Easy: just plug it in and evaluate.

– Time linear in the length of the formula

A tautology (or theorem) is a formula that evaluates to
T for every truth assignment.

Examples:

• (P ∨Q)⇔ ¬(¬P ∧ ¬Q)

• P ∨Q ∨ (¬P ∧ ¬Q)

• (P ⇒ Q) ∨ (Q⇒ P)

– It’s necessarily true that if elephants are pink then
the moon is made of green cheese or if the moon is
made of green cheese, then elephants are pink.

How hard is it to check if a formula is a tautology?

• How many truth assignments do we have to try?

1

Arguments

Definition: An argument has the form

A1

A2

...
An

——
B

A1, . . . , An are called the premises of the argument; B is
called the conclusion. An argument is valid if, whenever
the premises are true, then the conclusion is true.

2

Logical Implication

A formula A logically implies B if A⇒ B is a tautology.

Theorem: An argument is valid iff the conjunction of
its premises logically implies the conclusion.

Proof: Suppose the argument is valid. We want to show
(A1 ∧ . . . ∧ An)⇒ B is a tautology.

• Do we have to try all 2k truth assignments (where
k = #primitive propositions in A1, . . . , An, B).

It’s not that bad.

• Because of the way we defined⇒, A1∧ . . .∧An ⇒ B

is guaranteed to be true if A1 ∧ . . . ∧ An is false.

• But if A1 ∧ . . . ∧ An is true, B is true, since the
argument is valid.

• Thus, (A1 ∧ . . . ∧ An)⇒ B is a tautology.

For the converse, suppose (A1 ∧ . . . ∧ An) ⇒ B is a
tautology. If A1, . . . , An are true, then B must be true.
Hence the argument is valid.

3

Remember:

Borogroves are mimsy whenever it is brillig.
It is now brillig and this thing is a borogrove.
Hence this thing is mimsy.

Suppose

• P : It is now brillig

• Q: This thing is a borogrove

• R: This thing is mimsy

This becomes:

P ⇒ (Q⇒ R)
P ∧Q

——–
R

This argument is valid if

[(P ⇒ (Q⇒ R)) ∧ (P ∧Q)]⇒ R

is a tautology.

4

Natural Deduction

Are there better ways of telling if a formula is a tautology
than trying all possible truth assignments.

• In the worst case, it appears not.

– The problem is co-NP-complete.

– The satisfiability problem—deciding if at least one
truth assignment makes the formula true—is NP-
complete.

Nevertheless, it often seems that the reasoning is staight-
forward:
Why is this true:

((P ⇒ Q) ∧ (Q⇒ R))⇒ (P ⇒ R)

We want to show that if P ⇒ Q and Q ⇒ R is true,
then P ⇒ R is true.

So assume that P ⇒ Q and Q ⇒ R are both true. To
show that P ⇒ R, assume that P is true. Since P ⇒ Q

is true, Q must be true. Since Q ⇒ R is true, R must
be true. Hence, P ⇒ R is true.

We want to codify such reasoning.

5

Formal Deductive Systems

A formal deductive system (also known as an axiom
system) consists of

• axioms (special formulas)

• rules of inference: ways of getting new formulas from
other formulas. These have the form

A1

A2

...
An

——
B

Read this as “from A1, . . . , An, infer B.”

– Sometimes written “A1, . . . , An ` B”

Think of the axioms as tautologies, while the rules of
inference give you a way to derive new tautologies from
old ones.

6

Derivations

A derivation (or proof) in an axiom system AX is a
sequence of formulas

C1, . . . , CN ;

each formula Ck is either an axiom in AX or follows from
previous formulas using an inference rule in AX :

• i.e., there is an inference rule A1, . . . , An ` B such
that Ai = Cji for some ji < N and B = CN .

This is said to be a derivation or proof of CN .

A derivation is a syntactic object: it’s just a sequence of
formulas that satisfy certain constraints.

•Whether a formula is derivable depends on the axiom
system

• Different axioms → different formulas derivable

• Derivation has nothing to do with truth!

– How can we connect derivability and truth?

7

Typical Axioms

• P ⇒ ¬¬P

• P ⇒ (Q⇒ P)

What makes an axiom “acceptable”?

• it’s a tautology

8

Typical Rules of Inference

Modus Ponens

A⇒ B

A

———
B

Modus Tollens

A⇒ B

¬B

——
¬A

What makes a rule of inference “acceptable”?

• It preserves validity:

– if the antecedents are valid, so is the conclusion

• Both modus ponens and modus tollens are acceptable

9

Sound and Complete Axiomatizations

Standard question in logic:

Can we come up with a nice sound and complete
axiomatization: a (small, natural) collection of
axioms and inference rules from which it is possible
to derive all and only the tautologies?

• Soundness says that only tautologies are derivable

• Completeness says you can derive all tautologies

If all the axioms are valid and all rules of inference pre-
serve validity, then all formulas that are derivable must
be valid.

• Proof: by induction on the length of the derivation

It’s not so easy to find a complete axiomatization.

10

A Sound and Complete

Axiomatization for Propositional

Logic

Consider the following axiom schemes:

A1. A⇒ (B ⇒ A)

A2. (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

A3. ((A⇒ B)⇒ (A⇒ ¬B))⇒ ¬A

These are axioms schemes; each one encodes an infinite
set of axioms:

• P ⇒ (Q ⇒ P), (P ⇒ R) ⇒ (Q ⇒ (P ⇒ R)) are
instances of A1.

Theorem: A1, A2, A3 + modus ponens give a sound
and complete axiomatization for formulas in propositional
logic involving only ⇒ and ¬.

• Recall: can define ∨ and ∧ using ⇒ and ¬

– P ∨Q is equivalent to ¬P ⇒ Q

– P ∧Q is equivalent to ¬(P ⇒ ¬Q)

11

A Sample Proof

Derivation of P ⇒ P :

1. P ⇒ ((P ⇒ P)⇒ P)
[instance of A1: take A = P , B = P ⇒ P]

2. (P ⇒ ((P ⇒ P) ⇒ P)) ⇒ ((P ⇒ (P ⇒ P)) ⇒
(P ⇒ P))

[instance of A2: take A = C = P , B = P ⇒ P]

3. (P ⇒ (P ⇒ P))⇒ (P ⇒ P)
[applying modus ponens to 1, 2]

4. P ⇒ (P ⇒ P) [instance of A1: take A = B = P]

5. P ⇒ P [applying modus ponens to 3, 4]

Try deriving P ⇒ ¬¬P from these axioms

• it’s hard!

12

Algorithm Verification

This is (yet another) hot area of computer science.

• How do you prove that your program is correct?

– You could test it on a bunch of instances. That
runs the risk of not exercising all the features of
the program.

In general, this is an intractable problem.

• For small program fragments, formal verification us-
ing logic is useful

• It also leads to insights into program design.

13

Algorithm Verification: Example

Consider the following algorithm for multiplication:

Input x [Integer ≥ 0]
y [Integer]

Algorithm Mult

prod ← 0
u← 0
repeat u = x

prod← prod + y

u← u + 1
end repeat

How do we prove this is correct?

• Idea (due to Floyd and Hoare): annotate program
with assertions that are true of the line of code imme-
diately following them.

• An assertion just before a loop is true each time the
loop is entered. This is a loop invariant.

• An assertion at the end of a program is true after
running the program.

14

Input x [Integer ≥ 0]
y [Integer]

Algorithm Mult

prod← 0
u← 0
{prod = uy} [Loop invariant]
repeat u = x

prod← prod + y

u← u + 1
end repeat

{prod = uy ∧ u = x}

Thus, we must show prod = uy is true each time we enter
the loop.

• Proof is by induction (big surprise)

It follows that prod = uy ∧ u = x holds after exiting the
program, since we exit after trying the loop (so prod =
uy) and discovering u = x. It follows that prod = xy at
termination.

But how do we know the program terminates?

•We prove (by induction!) that after the kth iteration
of the loop, u = k.

• Since x ≥ 0, eventually u = x, and we terminate the
loop (and program)

15

We won’t be covering Boolean algebra (it’s done in CS
314), although you should read Section 7.5!

16

Predicate Calculus

There are lots of things that can’t be expressed by propo-
sitional formulas. In first-order logic, we can:

• Talk about individuals and the properties they have:

– Bob and Alice are both American
American(Bob) ∧ American(Alice)

• Talk about the relations between individuals

– Bob loves Alice but Bob doesn’t love Anne
Loves(Bob,Alice) ∧ ¬Loves(Bob,Anne).

• Quantify:

– Everybody loves somebody
∀x∃yLoves(x, y)

First-order logic lets us capture arguments like:

All men are mortal
Socrates is a man
Therefore Socrates is mortal

All prime numbers are integers
7 is a prime number
Therefore 7 is an integer

17

Syntax of First-Order Logic

We have:

• constant symbols : Alice, Bob

• variables: x, y, z, . . .

• predicate symbols of each arity: P , Q, R, . . .

– A unary predicate symbol takes one argument:
P (Alice), Q(z)

– A binary predicate symbol takes two arguments:
Loves(Bob,Alice), Taller(Alice,Bob).

An atomic expression is a predicate symbol together
with the appropriate number of arguments.

• Atomic expressions act like primitive propositions in
propositional logic

– we can apply ∧, ∨, ¬ to them

– we can also quantify the variables that appear in
them

Typical formula:

∀x∃y(P (x, y)⇒ ∃zQ(x, z))

18

Semantics of First-Order Logic

Assume we have some domain D.

• The domain could be finite:

– {1, 2, 3, 4, 5}

– the people in this room

• The domain could be infinite

– N , R, . . .

A statement like ∀xP (x) means that P (d) is true for each
d in the domain.

• If the domain is N , then ∀xP (x) is equivalent to

P (0) ∧ P (1) ∧ P (2) ∧ . . .

Similarly, ∃xP (x) means that P (d) is true for some d in
the domain.

• If the domain is N , then ∃xP (x) is equivalent to

P (0) ∨ P (1) ∨ P (2) ∨ . . .

Is ∃x(x2 = 2) true?

Yes if the domain is R; no if the domain is N .

How about ∀x∀y((x < y)⇒ ∃z(x < z < y))?

19

First-Order Logic: Formal Semantics

How do we decide if a first-order formula is true? Need:

• a domain D (what are you quantifying over)

• an interpretation I that interprets the constants and
predicate symbols:

– for each constant symbol c, I(c) ∈ D

∗Which domain element is Alice?

– for each unary predicate P , I(P) is a predicate on
domain D

∗ formally, I(P)(d) ∈ {true,false} for each d ∈ D

∗ Is Alice Tall? How about Bob?

– for each binary predicate Q, I(Q) is a predicate on
D ×D:

∗ formally, I(Q)(d1, d2) ∈ {true,false} for each
d1, d2 ∈ D

∗ Is Alice taller than Bob?

• a valuation V associating with each variable x an el-
ement V (x) ∈ D.

– To figure out if P (x) is true, you need to know
what x is.

20

Now we can define whether a formula A is true, given a
domain D, an interpretation I , and a valuation V , writ-
ten

(I,D, V) |= A

• Read this from right to left, like Hebrew: A is true at
(|=) (I,D, V)

The definition is by induction:

(I,D, V) |= P (x) if I(P)(V (x)) = true

(I,D, V) |= P (c) if I(P)(I(c))) = true

(I,D, V) |= ∀xA if (I, D, V ′) |= A for all valuations V ′

that agree with V except possibly on x

• V ′(y) = V (y) for all y 6= x

• V ′(x) can be arbitrary

(I,D, V) |= ∃xA if (I,D, V ′) |= A for some valuation
V ′ that agrees with V except possibly on x.

21

Translating from English to

First-Order Logic

All men are mortal
Socrates is a man
Therefore Socrates is mortal

There is two unary predicates: Mortal and Man
There is one constant: Socrates
The domain is the set of all people

∀x(Man(x)⇒Mortal(x))
Man(Socrates)
—————————————–
Mortal(Socrates)

22

More on Quantifiers

∀x∀yP (x, y) is equivalent to ∀y∀xP (x, y)

• P is true for every choice of x and y

Similarly ∃x∃yP (x, y) is equivalent to ∃y∃xP (x, y)

• P is true for some choice of (x, y).

What about ∀x∃yP (x, y)? Is it equivalent to ∃y∀xP (x, y)?

• Suppose the domain is the natural numbers. Com-
pare:

– ∀x∃y(y ≥ x)

– ∃y∀x(y ≥ x)

In general, ∃y∀xP (x, y)⇒ ∀x∃yP (x, y) is logically valid.

• A logically valid formula in first-order logic is the ana-
logue of a tautology in propositional logic.

• A formula is logically valid if it’s true in every domain
and for every interpretation of the predicate symbols.

23

More valid formulas involving quantifiers:

• ¬∀xP (x)⇔ ∃x¬P (x)

• Replacing P by ¬P , we get:

¬∀x¬P (x)⇔ ∃x¬¬P (x)

• Therefore
¬∀x¬P (x)⇔ ∃xP (x)

• Similarly, we have

¬∃xP (x)⇔ ∀x¬P (x)

¬∃x¬P (x)⇔ ∀xP (x)

24

Bound and Free Variables

∀i(i2 > i) is equivalent to ∀j(j2 > j):

• the i and j are bound variables, just like the i, j in
n∑

i=1

i2 or
n∑

j=1

j2

What about ∃i(i2 = j):

• the i is bound by ∃i; the j is free. Its value is uncon-
strained.

• if the domain is the natural numbers, the truth of this
formula depends on the value of j.

25

Axiomatizing First-Order Logic

Just as in propositional logic, there are axioms and rules
of inference that provide a sound and complete axioma-
tization for first-order logic, independent of the domain.

A typical axiom:

• ∀x(P (x)⇒ Q(x))⇒ (∀xP (x)⇒ ∀xQ(x)).

A typical rule of inference is Universal Generalization:

ϕ(x)
———-
∀xϕ(x)

Gödel proved completeness of this axiom system in 1930.

26

