The central limit theorem

- Consider a sequence X_k of Bernoulli (p) trials.
- By the (strong) LLN we know that $\sum_{ }^{\infty}$ $\frac{n}{1}X_k$ $\frac{1}{n}^{\Lambda_k}$ will converge to p.
- In particular, the limit is deterministic, there is nothing random about it anymore.
- What is the limit of $\sum_{ }^{\infty}$ $\frac{n}{1}X_k-np$ $rac{\mathbf{x}_k - np}{n}$?
- This makes sense in light of what we discovered last This makes sense in light of what we discovered last
time: $\sum_{k=1}^{n} X_k$ is concentrated in an interval of size $c\sqrt{n}$ about its mean np.
- A different type of limit is encountered if we normalize A different type of intervals by \sqrt{n} instead of n .
- The following graphs depict the pmf of

$$
\hat{S}_n = \frac{\sum_{k=1}^n X_k - np}{\sqrt{np(1-p)}}.
$$

Figure 1: The pmf of $\hat{S}_{10,0.5}$

Figure 2: The pmf of $\hat{S}_{70,0.5}$

Figure 3: The pmf of $\hat{S}_{10,0.2}$

Figure 4: The pmf of $\hat{S}_{70,0.2}$

The central limit theorem

- The curve that you saw in all the graphs was that of $\varphi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$ √ $rac{1}{2\pi}$.
- If I tell you that this limit holds for a sequence of properly normalized Poisson iid random variables can you guess what the normalization is?
- Theorem. Suppose X_k are a sequence of iid random variables with mean μ and variance σ^2 . Then

$$
\lim_{n \to \infty} \Pr\left(\frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n\sigma^2}} \le \alpha\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2}.
$$

• The *continuous* distribution on the rhs is called the normal or Gaussian distribution.

Conditional Expectation

- If X is the result of a fair die toss then $E(X) = 7/2$.
- Suppose we are given that X is even. Will that change the expected value?
- Now there are only three equally likely results: 2, 4, $& 6$, so the conditional expectation will be 4.
- Def. $E(X|A)$ the conditional expectation of X given A is defined for A with $Pr(A) > 0$ by:

$$
E(X|A) = \sum_{x} x \Pr(X = x|A).
$$

• Example. Find $E(X|X \text{ is odd})$. Let $A = \{\omega :$ $X(\omega) = 1, 3, 5$. Then

$$
E(X|A) = \sum_{x} x Pr(X = x|A)
$$

=
$$
\sum_{x} x \frac{Pr(\{X = x\} \cap A)}{Pr(A)}
$$

=
$$
1 \cdot \frac{1/6}{1/2} + 3 \cdot \frac{1/6}{1/2} + 5 \cdot \frac{1/6}{1/2} = 3.
$$

• Note that in this example $E(X) = 7/2 = (3+4)/2 = E(X|A)/2 + E(X|\overline{A})/2.$ **Theorem:** For all events A such that $Pr(A)$, $Pr(\overline{A}) > 0$:

$$
E(X) = E(X|A) \Pr(A) + E(X|\overline{A}) \Pr(\overline{A})
$$

Proof:

$$
E(X) = \sum_{x} x \Pr(X = x)
$$

=
$$
\sum_{x} x \left[\Pr(\{X = x\} \cap A) + \Pr(\{X = x\} \cap \overline{A}) \right]
$$

=
$$
\sum_{x} x \left[\Pr(X = x | A) \Pr(A) + \Pr(X = x | \overline{A}) \Pr(\overline{A}) \right]
$$

=
$$
\sum_{x} \left[x \Pr(X = x | A) \Pr(A) \right]
$$

+
$$
\left[x \Pr(X = x | \overline{A}) \Pr(\overline{A}) \right]
$$

=
$$
E(X | A) \Pr(A) + E(X | \overline{A}) \Pr(\overline{A})
$$

Example

- \bullet I toss a fair die. If it lands with 3 or more, I toss 5 times a coin with $Pr(H) = p_1$. If it lands with less than 3, I toss 5 times a coin with $Pr(H) = p_2$. What is the expected number of heads, X ?
- Let A be the event that the die lands with 3 or more.
- Clearly, $Pr(A) = 2/3$.
- What is $E(X|A)$?
- Conditioned on A , X is binomial B_{n,p_1} so

$$
E(X|A) = np_1.
$$

• Similarly for \overline{A} , so by the previous theorem,

$$
E(X) = E(X|A)Pr(A) + E(X|\overline{A})Pr(\overline{A})
$$

= $np_1 \cdot \frac{2}{3} + np_2 \cdot \frac{1}{3}$.

The Rabin-Miller Test

• Input:

 \cdot $n = 2^{s}t + 1$ where t is odd and $s \in \mathbb{N}$

 $\cdot b \in \{1, 2, \ldots, n-1\}$

- T_{RM} : Does exactly one of the following hold?
	- $\cdot b^t \equiv 1 \pmod{n}$ or
	- $\cdot b^{2^{j}t} \equiv -1 \pmod{n}$ for one $0 \leq j \leq s-1$.

• Claim.

- \cdot If n is prime, $T_{RM}(b, n)$ returns "yes" for all $b \in$ $\{1, 2, \ldots, n-1\}.$
- \cdot If *n* is composite then for at least 3/4 of those bs $T_{RM}(b, n)$ returns "no" (i.e. *n* is a composite).
- Recall that a random primality test randomly draws numbers $b \in \{1, \ldots, n-1\}$ and asks whether b is a witness to n's primality, or whether $T_{RM}(b, n)$ returns " $yes"$.
- Suppose n is a composite and that we can truly create a uniform independent sample of bs.
- Let X count the number of tests till we hit a negative result. What is the distribution of X?
- X is a geometric random variable with $p \geq 3/4$ (success = $T_{RM}(b, n)$ declares *n* is not a prime, or returns "no").
- What is the expected number of tests we'll perform before we get a negative one?
- $E(X) = 1/p = 4/3$.
- What is the probability that we will fail in our first 40 tests?

$$
\underbrace{(1-p)\cdot(1-p)\dots(1-p)}_{40 \text{ times}} \le \left(\frac{1}{4}\right)^{40} \sim 10^{-24}.
$$

Contention Resolution

- One server, n unsaturable processes (the service can be bandwidth for example).
- Only one process can access the server at any round.
- If two or more processes try to gain access at the same time none gets it.
- How to share the resources without a central controller or inter-communication?
- Randomization is at the core of the "symmetry-breaking" protocol.
- At each round each process randomly tries to gain access with probability p independently of anything else.
- Let A_{it} be the event: the *i*th process attempts to access the server at round t.
- What is $Pr(A_{it})$?
- \bullet p .
- What is the probability that the *i*th process will succeed in that attempt?
- Let S_{it} be the that event: $S_{it} = A_{it} \cap (\bigcap_{j \neq i} \overline{A}_{jt}).$
- By the independence,

$$
Pr(S_{it}) = Pr(A_{it}) \prod_{j \neq i} Pr(\bar{A}_{jt}) = p(1 - p)^{n-1}.
$$

- How can we maximize $\alpha = \Pr(S_{it})$?
- Consider $f(p) = p(1-p)^{n-1}$ for $p \in (0,1)$: it has a maximum at $p = 1/n$.
- $\bullet \ \alpha \ = \ \frac{1}{n}$ $\frac{1}{n}(1-\frac{1}{n})$ $\left(\frac{1}{n}\right)^{n-1}$ is the maximal possible value for $Pr(S_{it})$: this will now assumed to be the choice.

•
$$
\frac{1}{e} \le (1 - \frac{1}{n})^{n-1} \le \frac{1}{2}
$$
, so
\n $\frac{1}{e} \cdot \frac{1}{n} \le \Pr(S_{it}) \le \frac{1}{2} \cdot \frac{1}{n}$.

How long is the average wait?

- Let X_i denote the first round that i gains access to the server.
- What is the distribution of X_i ?
- Geometric with $p = \Pr(S_{it}) = \frac{1}{n}(1 \frac{1}{n})$ $\frac{1}{n}\big)^{n-1}.$
- Since $\frac{1}{e} \leq (1 \frac{1}{n})$ $\frac{1}{n}$ $)^{n-1} \leq \frac{1}{2}$ $\frac{1}{2}$, the expected waiting time for service, $E(\tilde{X}_i) = 1/p$, satisfies:

$$
2n \le E(X_i) \le en.
$$

• Compare that with an optimal strategy of round robin (requires a controller) where the expected waiting time is roughly $n/2$.

Average exhaustive service time

- What is the average waiting time for all the processes to be serviced?
- Let Y be the time $(=$ number of rounds) it took for servicing all the processes.
- Let's order the processes according to their service time.
	- \cdot Let Y_1 be the time (round) the first process was serviced.
	- \cdot Let Y_2 be the *additional* time it took for the second process to be serviced.
	- · Note that the "second process was service" is not the same as the "second time a process gained access to the server" (why?).
	- More generally, let Y_k be the time it took between the first servicing of the $k - 1$ st and the kth processes.
	- \cdot What is the connection between Y and Y_1, Y_2, \ldots, Y_n ?
	- $\cdot Y =$ $\sum_{n=1}^{\infty}$ $\frac{n}{1}Y_k$
	- What is the distribution of Y_1 ?

· Geometric with

$$
p_1 = \Pr(\bigcup_{i=1}^n S_{it}) = n \Pr(S_{it}) = n \frac{1}{n} (1 - \frac{1}{n})^{n-1}.
$$

- \cdot What is the distribution of $Y_2?$
- · Geometric with

$$
p_2 = \Pr(\bigcup_{n=2}^n S_{it}) = (n-1)\frac{1}{n}(1-\frac{1}{n})^{n-1}.
$$

- What is the distribution of Y_k ?
- · Geometric with

•

$$
p_k = \Pr(\bigcup_{i=k}^n S_{it}) = (n - k + 1)\frac{1}{n}(1 - \frac{1}{n})^{n-1}.
$$

$$
\Rightarrow E(Y) = \sum_{k=1}^{n} \frac{n}{(1 - \frac{1}{n})^{n-1}} \frac{1}{n - k + 1}
$$

$$
= \frac{n}{(1 - \frac{1}{n})^{n-1}} \sum_{j=1}^{n} \frac{1}{j},
$$

since $E(Y) = \sum_{k} E(Y_k)$, and $E(Y_k) = \frac{1}{p_k}$.

• Def. The nth harmonic number is $H(n) = \sum_{j=1}^{n}$ 1 $\frac{1}{j}$.

• By comparing
$$
H(n)
$$
 to $\int \frac{1}{x}$ one can show:
\n
$$
\log(n+1) < H(n) < 1 + \log n,
$$
\n
$$
\Rightarrow 2n \log(n+1) < E(Y) < en(1 + \log n).
$$
\n
$$
\Rightarrow E(Y) = \Theta(n \log n).
$$

Distribution of service waiting time

- What is the probability that the *i*th process will not gain access in the first t rounds?
- Let F_{it} be that event. Then $F_{it} = \bigcap_{r=1}^t \overline{S}_{ir}$, so

$$
Pr(F_{it}) = \left[1 - \frac{1}{n}(1 - \frac{1}{n})^{n-1}\right]^{t}.
$$

• For $t = c[ne]$, h 1 − 1 \overline{n} $(1 -$ 1 \overline{n}) $n-1$ ₁t \leq h 1 − 1 \overline{n} 1 e I^t ≤ $\frac{L}{L}$ 1 − 1 ne : <u>ן</u>
ך cne = $\frac{L}{\Gamma}$ 1 − 1 ne $\setminus ne^c$

Using $(1 - 1/x)^x \le 1/e$ for $x \ge 1$

$$
\leq \frac{1}{e^c}.
$$

• Choosing $c = \log n$, for $t = \log n \cdot \lceil ne \rceil$:

$$
\Pr(F_{it}) \le \frac{1}{e^{\log n}} = \frac{1}{n}.
$$

Distribution time of servicing 'em all

- What is the probability that servicing all the processes would take more than t rounds?
- This is Pr $(\bigcup_{i=1}^n$ $\sum\limits_{i=1}^n F_{it}$.
- By the inclusion-exclusion formula

$$
\Pr\left(\bigcup_{i=1}^{n} F_{it}\right) = \sum_{i} \Pr(F_{it})
$$

$$
-\sum_{i < j} \Pr(F_{it} \cap F_{jt}) + \sum_{i < j < k} \Pr(F_{it} \cap F_{jt} \cap F_{kt}) - \dots
$$

$$
\Pr(F_{it}) = \left[1 - \frac{1}{n}(1 - \frac{1}{n})^{n-1}\right]^{t}
$$

similarly,

$$
\Pr(F_{it} \cap F_{jt}) = \left[1 - \frac{2}{n}(1 - \frac{1}{n})^{n-1}\right]^t
$$

and more generally,

$$
\Pr(F_{i_1t} \cap F_{i_2t} \cap \dots F_{i_kt}) = \left[1 - \frac{k}{n}(1 - \frac{1}{n})^{n-1}\right]^t.
$$

 \bullet So,

$$
\Pr\left(\bigcup_{i=1}^{n} F_{it}\right) = \sum_{k} (-1)^{k-1} \binom{n}{k} \left[1 - \frac{k}{n} \left(1 - \frac{1}{n}\right)^{n-1}\right]^{t}.
$$

- This can be computed for any values of n and t. However to get an idea about how this distribution looks like it pays to concentrate only on the first term of the inclusion-exclusion formula:
- For $t = m \log n \cdot \lceil ne \rceil$: $\Pr\left(\bigcup_{i=1}^n\right)$ $\sum_{i=1}^n F_{it}$) \leq $\overline{}$ i $Pr(F_{it}) = n Pr(F_{it})$ $= n$ $\frac{v}{\Gamma}$ 1 − 1 \overline{n} $(1 -$ 1 \overline{n}) $n-1$ ^t $\leq n$ ∟
Г∕ 1 − 1 ne $\frac{n}{\sqrt{ne}}$ ne $\frac{n}{\log n}$ $\leq n$ 1 $\frac{1}{e^{\log n^m}} =$ 1 n^{m-1} .
- For example, for $t = 3 \log n \cdot \lceil ne \rceil$,

$$
\Pr\left(\bigcup_{i=1}^n F_{it}\right) \leq \frac{1}{n^2}.
$$

- What about the terms we neglected?
- First note that what we derived is a valid upper bound. Next consider for example,

$$
\binom{n}{2} \left[1 - \frac{2}{n} (1 - \frac{1}{n})^{n-1} \right]^t \le \binom{n}{2} \left[\left(1 - \frac{2}{n e} \right)^{n e/2} \right]^{6 \log n} \le \binom{n}{2} \frac{1}{e^{\log n^6}} < \frac{1}{2n^4}.
$$

- The "higher order" terms are going to be even smaller.
- On the other hand it's not difficult to prove that for $n\geq 2$

$$
n\Big[1-\frac{1}{n}(1-\frac{1}{n})^{n-1}\Big]^t > \frac{1}{n^{3.1}},
$$

so the first term indeed dominates the inclusion exclusion.

Finding the median

- Given a list of numbers $S = \{a_1, a_2, \ldots, a_{2m+1}\}\$ find the median: the $m + 1$ st largest element (if $n = 2m$ we look for the mth largest element).
- Simple solution: sort the list and report the median.
- Cost: sorting is at least $O(n \log n)$ (number of comparisons required).
- Can we do better?
- Yes, but we need to solve a more general problem.
- The function $\texttt{Select}(S, k)$ returns the kth smallest element in S.
- For $n = 2m+1$ what are: Select(S, 1), Select(S, m), $\texttt{Select}(S,n)$?
- To find the minimum and maximum we clearly do not need more than n comparisons.
- It is much less obvious that this is true in general for $\texttt{Select}(S, k).$

$\texttt{Select}(S, k)$

- On input $S = \{a_1, a_2, \ldots, a_n\}$ and k:
	- · Randomly choose a splitter or pivot $a_i \in S$.
	- Split S into $S^- := \{a_j : a_j < a_i\}$ and $S^+ := \{a_j : a_j < a_j\}$ $a_i > a_i$ } (requires $n - 1$ comparisons).
	- \cdot If $|S^-| = k 1$ return a_i .
	- \cdot Else if $|S^-| \geq k$ return Select (S^-, k) .
	- · Else return $\texttt{Select}(S^+, k (|S^-| + 1)).$
- Note that the algorithm is called recursively with a strictly smaller set therefore it has to stop.
- Let $T(n)$ be the running time (number of comparisons) required by **Select** for an input of size n .
- Note that $T(n)$ is a random variable.
- How big can it be?
- \bullet cn²: if we look for the median and keep choosing a pivot which is at either ends:

$$
T(n) \ge n + (n - 1) + (n - 2) + \dots + n/2.
$$

• But we have to be extremely unfortunate for this to happen.

Average of $T(n)$

- We say the algorithm is in phase j if the size of the currently considered S is between $n(3/4)^j$ and $n(3/4)^{j+1}$.
- Let Y_j be the number of steps we spend at phase j.
- Clearly,

$$
T(n) \le \sum_{j=0}^{\lfloor \log_{3/4} n \rfloor} Y_j \cdot n(3/4)^j.
$$

Therfore,

$$
E[T(n)] \leq \sum_{j=0}^{\lfloor \log_{3/4} n \rfloor} n(3/4)^j \cdot E(Y_j).
$$

- Choosing any number which is not in the first or last quadrants would leave us with both S^- and S^+ smaller than $3/4$ the size of the current S thereby ending phase j .
- Thus, $E(Y_j) \leq \frac{1}{1/2} = 2$ and it follows that

$$
E[T(n)] \le 2n \sum_{j=0}^{\lfloor \log_{3/4} n \rfloor} (3/4)^j < 8n.
$$

Logic

- Logic is a tool for formalizing reasoning.
- We want to be able to systematically analyze arguments like
	- · Borogroves are mimsy whenever it is brillig.
	- · It is now brillig and this thing is a borogrove.
	- · Hence this thing is mimsy.
- Is this a valid conclusion?
- Is the following a valid argument: given that
	- · All lions are fierce.
	- · Some lions do not drink coffee.
- Can we conclude that some fierce creatures do not drink coffee?

Proposition Logic

- To formalize the reasoning process, we need to restrict the kinds of things we can say.
- Propositional logic is particularly restrictive.
- A proposition is a statement that is either true or false but not both.
- The *syntax* of propositional logic tells us what are legitimate formulas.
- We start with *primitive* or *atomic* propositions. Those are determined to be true or false from the context. For example,
	- · Washington D.C. is the capital of USA.
	- \cdot 1 + 1 = 2.
	- \cdot 4 is odd.
	- · The empty set has 0 elements.
	- · Read this carefully not a proposition.
- We can then form *compound* propositions using connectives like:

¬ : not ∧ : and ∨ : or →: implies ←→: equivalent (if and only if)

Negation operator (not)

- Def. Given a proposition p , the negation of p , denoted by $\neg p$ (read: "not p ") is true if and only if p is false.
- Intuitively, $\neg p$ is the statement: "It is not the case that p ".
- Example: if $p = 4$ is odd, then $\neg p$ is the proposition "It is not the case that 4 is odd", or 4 is not odd.
	- · Aside: Note that this does not necessarily imply that 4 is even unless we have more information such as: "every number is either odd or even" and that "4 is a number".
- Mathematically we can define the negation operator

through its truth table:

$$
\begin{array}{c}\n\text{Time of} \\
\hline\np & \neg p \\
\hline\nT & F \\
F & T\n\end{array}
$$

Conjunction

- Def. For propositions p and q, $p \wedge q$ ("p and q", "conjunction") is true if and only if both p and q are true.
- Example: the proposition $((1 + 1 = 2) \land (Tor)$ is the capital of Canada) is true if and only if both propositions are true.
- The truth table of the conjunction operator is:

Disjunction, and the "exclusive or"

- Def. For propositions p and q, $p \vee q$ ("p or q", "disjunuction") is false if and only if both p and q are false.
- The truth table of the disjuction operator is:

- Note that in English p or q might mean:
	- · exclusive or, as in "Soup or salad comes with an entrée", or
	- · inclusive or, as in "The prerequisites for this course are: Math100 or CS100".
- The logical or (disjunction) is inclusive, but we do

Our first claim

Claim.

 $p \oplus q$ is equivalent to $(p \land \neg q) \lor (\neg p \land q)$.

Proof. Via truth tables:

while

