
The central limit theorem

• Consider a sequence Xk of Bernoulli (p) trials.

• By the (strong) LLN we know that
∑n

1 Xk
n will converge

to p.

• In particular, the limit is deterministic, there is noth-
ing random about it anymore.

• What is the limit of
∑n

1 Xk−np
n ?

• This makes sense in light of what we discovered last
time:

∑n
1 Xk is concentrated in an interval of size

c
√

n about its mean np.

• A different type of limit is encountered if we normalize
by
√

n instead of n.

• The following graphs depict the pmf of

Ŝn =

∑n
k=1 Xk − np√
np(1− p)

.

1



−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
The pmf of a normalized binomial, n=10 p=0.5

Figure 1: The pmf of Ŝ10,0.5
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Figure 2: The pmf of Ŝ70,0.5
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Figure 3: The pmf of Ŝ10,0.2
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Figure 4: The pmf of Ŝ70,0.2
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The central limit theorem

• The curve that you saw in all the graphs was that of

ϕ(x) = e−x2/2√
2π

.

• If I tell you that this limit holds for a sequence of
properly normalized Poisson iid random variables can
you guess what the normalization is?

• Theorem. Suppose Xk are a sequence of iid random
variables with mean µ and variance σ2. Then

lim
n→∞

Pr
(∑n

k=1 Xk − nµ√
nσ2

≤ α
)

=
1√
2π

∫ α

−∞
e−x2/2.

• The continuous distribution on the rhs is called the
normal or Gaussian distribution.
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Conditional Expectation

• If X is the result of a fair die toss then E(X) = 7/2.

• Suppose we are given that X is even. Will that change
the expected value?

• Now there are only three equally likely results: 2, 4,
& 6, so the conditional expectation will be 4.

• Def. E(X|A) the conditional expectation of X
given A is defined for A with Pr(A) > 0 by:

E(X|A) =
∑

x

x Pr(X = x|A).

• Example. Find E(X|X is odd). Let A = {ω :
X(ω) = 1, 3, 5}. Then

E(X|A) =
∑

x

x Pr(X = x|A)

=
∑

x

x
Pr({X = x} ∩ A)

Pr(A)
.

= 1 · 1/6

1/2
+ 3 · 1/6

1/2
+ 5 · 1/6

1/2
= 3.

• Note that in this example

E(X) = 7/2 = (3 + 4)/2 = E(X|A)/2 + E(X|Ā)/2.
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Theorem: For all events A such that Pr(A), Pr(A) > 0:

E(X) = E(X|A) Pr(A) + E(X|A) Pr(A)

Proof:

E(X) =
∑

x

x Pr(X = x)

=
∑

x

x
[
Pr({X = x} ∩ A) + Pr({X = x} ∩ A)

]

=
∑

x

x
[
Pr(X = x|A) Pr(A)

+ Pr(X = x|A) Pr(A)
]

=
∑

x

[
x Pr(X = x|A) Pr(A)

]

+
[
x Pr(X = x|A) Pr(A)

]

= E(X|A) Pr(A) + E(X|A) Pr(A)
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Example

• I toss a fair die. If it lands with 3 or more, I toss 5
times a coin with Pr(H) = p1. If it lands with less
than 3, I toss 5 times a coin with Pr(H) = p2. What
is the expected number of heads, X?

• Let A be the event that the die lands with 3 or more.

• Clearly, Pr(A) = 2/3.

• What is E(X|A)?

• Conditioned on A, X is binomial Bn,p1 so

E(X|A) = np1.

• Similarly for Ā, so by the previous theorem,

E(X) = E(X|A) Pr(A) + E(X|A) Pr(A)

= np1 · 2

3
+ np2 · 1

3
.
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The Rabin-Miller Test

• Input:

· n = 2st + 1 where t is odd and s ∈ N
· b ∈ {1, 2, . . . , n− 1}

• TRM: Does exactly one of the following hold?

· bt ≡ 1 (mod n) or

· b2jt ≡ −1 (mod n) for one 0 ≤ j ≤ s− 1.

• Claim.

· If n is prime, TRM(b, n) returns “yes” for all b ∈
{1, 2, . . . , n− 1}.
· If n is composite then for at least 3/4 of those bs
TRM(b, n) returns “no” (i.e. n is a composite).

• Recall that a random primality test randomly draws
numbers b ∈ {1, . . . , n − 1} and asks whether b is a
witness to n’s primality, or whether TRM(b, n) returns
“yes”.

• Suppose n is a composite and that we can truly create
a uniform independent sample of bs.

• Let X count the number of tests till we hit a negative
result. What is the distribution of X?
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• X is a geometric random variable with p ≥ 3/4 (suc-
cess = TRM(b, n) declares n is not a prime, or returns
“no”).

• What is the expected number of tests we’ll perform
before we get a negative one?

• E(X) = 1/p = 4/3.

• What is the probability that we will fail in our first
40 tests?

(1− p) · (1− p) . . . (1− p)︸ ︷︷ ︸
40 times

≤
(1

4

)40

∼ 10−24.
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Contention Resolution

• One server, n unsaturable processes (the service can
be bandwidth for example).

• Only one process can access the server at any round.

• If two or more processes try to gain access at the same
time none gets it.

• How to share the resources without a central controller
or inter-communication?

• Randomization is at the core of the “symmetry-breaking”
protocol.

• At each round each process randomly tries to gain
access with probability p independently of anything
else.

• Let Ait be the event: the ith process attempts to
access the server at round t.

• What is Pr(Ait)?

• p.

• What is the probability that the ith process will suc-
ceed in that attempt?
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• Let Sit be the that event: Sit = Ait ∩ (∩j 6=iĀjt).

• By the independence,

Pr(Sit) = Pr(Ait)
∏

j 6=i

Pr(Ājt) = p(1− p)n−1.

• How can we maximize α = Pr(Sit)?

• Consider f (p) = p(1− p)n−1 for p ∈ (0, 1): it has a
maximum at p = 1/n.

• α = 1
n(1− 1

n)
n−1

is the maximal possible value for
Pr(Sit): this will now assumed to be the choice.

• 1
e ≤ (1− 1

n)
n−1 ≤ 1

2, so

1

e
· 1

n
≤ Pr(Sit) ≤ 1

2
· 1

n
.
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How long is the average wait?

• Let Xi denote the first round that i gains access to
the server.

• What is the distribution of Xi?

• Geometric with p = Pr(Sit) = 1
n(1− 1

n)
n−1

.

• Since 1
e ≤ (1− 1

n)
n−1 ≤ 1

2, the expected waiting time
for service, E(Xi) = 1/p, satisfies:

2n ≤ E(Xi) ≤ en.

• Compare that with an optimal strategy of round robin
(requires a controller) where the expected waiting time
is roughly n/2.
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Average exhaustive service time

• What is the average waiting time for all the processes
to be serviced?

• Let Y be the time (= number of rounds) it took for
servicing all the processes.

• Let’s order the processes according to their service
time.

· Let Y1 be the time (round) the first process was
serviced.

· Let Y2 be the additional time it took for the second
process to be serviced.

· Note that the “second process was service” is not
the same as the “second time a process gained ac-
cess to the server” (why?).

· More generally, let Yk be the time it took between
the first servicing of the k − 1st and the kth pro-
cesses.

· What is the connection between Y and Y1, Y2, . . . , Yn?

· Y =
∑n

1 Yk

· What is the distribution of Y1?
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· Geometric with

p1 = Pr(∪n
i=1Sit) = n Pr(Sit) = n

1

n
(1− 1

n
)
n−1

.

· What is the distribution of Y2?

· Geometric with

p2 = Pr(∪n
n=2Sit) = (n− 1)

1

n
(1− 1

n
)
n−1

.

· What is the distribution of Yk?

· Geometric with

pk = Pr(∪n
i=kSit) = (n− k + 1)

1

n
(1− 1

n
)
n−1

.

•
⇒ E(Y ) =

n∑

k=1

n

(1− 1
n)

n−1

1

n− k + 1

=
n

(1− 1
n)

n−1

n∑
j=1

1

j
,

since E(Y ) =
∑

k E(Yk), and E(Yk) = 1
pk

.

• Def. The nth harmonic number is H(n) =
∑n

j=1
1
j .

• By comparing H(n) to
∫

1
x one can show:

log(n + 1) < H(n) < 1 + log n,

⇒ 2n log(n + 1) < E(Y ) < en(1 + log n).

⇒ E(Y ) = Θ(n log n).

16



Distribution of service waiting time

• What is the probability that the ith process will not
gain access in the first t rounds?

• Let Fit be that event. Then Fit = ∩t
r=1S̄ir, so

Pr(Fit) =
[
1− 1

n
(1− 1

n
)
n−1]t

.

• For t = cdnee,
[
1− 1

n
(1− 1

n
)
n−1]t

≤
[
1− 1

n

1

e

]t

≤
[
1− 1

ne

]cne

=
[(

1− 1

ne

)ne
]c

Using (1− 1/x)x ≤ 1/e for x ≥ 1

≤ 1

ec
.

• Choosing c = log n, for t = log n · dnee:

Pr(Fit) ≤ 1

elog n
=

1

n
.
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Distribution time of servicing ’em all

• What is the probability that servicing all the processes
would take more than t rounds?

• This is Pr
( ∪n

i=1 Fit

)
.

• By the inclusion-exclusion formula

Pr
( ∪n

i=1 Fit

)
=

∑
i

Pr(Fit)

−
∑
i<j

Pr(Fit ∩Fjt) +
∑

i<j<k

Pr(Fit ∩Fjt ∩Fkt)− . . .

Pr(Fit) =
[
1− 1

n
(1− 1

n
)
n−1]t

similarly,

Pr(Fit ∩ Fjt) =
[
1− 2

n
(1− 1

n
)
n−1]t

and more generally,

Pr(Fi1t ∩ Fi2t ∩ . . . Fikt) =
[
1− k

n
(1− 1

n
)
n−1]t

.

• So,

Pr
(∪n

i=1Fit

)
=

∑

k

(−1)k−1

(
n

k

)[
1−k

n
(1− 1

n
)
n−1]t

.
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• This can be computed for any values of n and t. How-
ever to get an idea about how this distribution looks
like it pays to concentrate only on the first term of the
inclusion-exclusion formula:

• For t = m log n · dnee:
Pr

( ∪n
i=1 Fit

) ≤
∑

i

Pr(Fit) = n Pr(Fit)

= n
[
1− 1

n
(1− 1

n
)
n−1]t

≤ n
[(

1− 1

ne

)ne
]m log n

≤ n
1

elog nm =
1

nm−1
.

• For example, for t = 3 log n · dnee,

Pr
( ∪n

i=1 Fit

) ≤ 1

n2
.

• What about the terms we neglected?

• First note that what we derived is a valid upper bound.
Next consider for example,
(

n

2

)[
1− 2

n
(1− 1

n
)
n−1]t

≤
(

n

2

)[(
1− 2

ne

)ne/2
]6 log n

≤
(

n

2

)
1

elog n6 <
1

2n4
.
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• The “higher order” terms are going to be even smaller.

• On the other hand it’s not difficult to prove that for
n ≥ 2

n
[
1− 1

n
(1− 1

n
)
n−1]t

>
1

n3.1
,

so the first term indeed dominates the inclusion ex-
clusion.
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Finding the median

• Given a list of numbers S = {a1, a2, . . . , a2m+1} find
the median: the m + 1st largest element (if n = 2m
we look for the mth largest element).

• Simple solution: sort the list and report the median.

• Cost: sorting is at least O(n log n) (number of com-
parisons required).

• Can we do better?

• Yes, but we need to solve a more general problem.

• The function Select(S, k) returns the kth smallest
element in S.

• For n = 2m+1 what are: Select(S, 1), Select(S, m),
Select(S, n)?

• To find the minimum and maximum we clearly do not
need more than n comparisons.

• It is much less obvious that this is true in general for
Select(S, k).

21



Select(S, k)

• On input S = {a1, a2, . . . , an} and k:

· Randomly choose a splitter or pivot ai ∈ S.

· Split S into S− := {aj : aj < ai} and S+ := {aj :
aj > ai} (requires n− 1 comparisons).

· If |S−| = k − 1 return ai.

· Else if |S−| ≥ k return Select(S−, k).

· Else return Select(S+, k − (|S−| + 1)).

• Note that the algorithm is called recursively with a
strictly smaller set therefore it has to stop.

• Let T (n) be the running time (number of compar-
isons) required by Select for an input of size n.

• Note that T (n) is a random variable.

• How big can it be?

• cn2: if we look for the median and keep choosing a
pivot which is at either ends:

T (n) ≥ n + (n− 1) + (n− 2) + · · · + n/2.

• But we have to be extremely unfortunate for this to
happen.
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Average of T (n)

• We say the algorithm is in phase j if the size of the cur-
rently considered S is between n(3/4)j and n(3/4)j+1.

• Let Yj be the number of steps we spend at phase j.

• Clearly,

T (n) ≤
blog3/4 nc∑

j=0

Yj · n(3/4)j.

Therfore,

E[T (n)] ≤
blog3/4 nc∑

j=0

n(3/4)j · E(Yj).

• Choosing any number which is not in the first or
last quadrants would leave us with both S− and S+

smaller than 3/4 the size of the current S thereby
ending phase j.

• Thus, E(Yj) ≤ 1
1/2 = 2 and it follows that

E[T (n)] ≤ 2n

blog3/4 nc∑
j=0

(3/4)j < 8n.
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Logic

• Logic is a tool for formalizing reasoning.

• We want to be able to systematically analyze argu-
ments like

· Borogroves are mimsy whenever it is brillig.

· It is now brillig and this thing is a borogrove.

· Hence this thing is mimsy.

• Is this a valid conclusion?

• Is the following a valid argument: given that

· All lions are fierce.

· Some lions do not drink coffee.

• Can we conclude that some fierce creatures do not
drink coffee?
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Proposition Logic

• To formalize the reasoning process, we need to restrict
the kinds of things we can say.

• Propositional logic is particularly restrictive.

• A proposition is a statement that is either true or false
but not both.

• The syntax of propositional logic tells us what are
legitimate formulas.

• We start with primitive or atomic propositions. Those
are determined to be true or false from the context.
For example,

· Washington D.C. is the capital of USA.

· 1 + 1 = 2.

· 4 is odd.

· The empty set has 0 elements.

· Read this carefully - not a proposition.

• We can then form compound propositions using con-
nectives like:

¬ : not ∧ : and ∨ : or

→: implies ←→: equivalent (if and only if)
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Negation operator (not)

• Def. Given a proposition p, the negation of p, de-
noted by ¬p (read: “not p”) is true if and only if p is
false.

• Intuitively, ¬p is the statement: “It is not the case
that p”.

• Example: if p =4 is odd, then ¬p is the proposition
“It is not the case that 4 is odd”, or 4 is not odd.

· Aside: Note that this does not necessarily imply
that 4 is even unless we have more information
such as: “every number is either odd or even” and
that “4 is a number”.

• Mathematically we can define the negation operator

through its truth table:
p ¬p
T F
F T
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Conjunction

• Def. For propositions p and q, p ∧ q (“p and q”,
“conjunction”) is true if and only if both p and q are
true.

• Example: the proposition ((1 + 1 = 2) ∧ (Toronto
is the capital of Canada) is true if and only if both
propositions are true.

• The truth table of the conjunction operator is:

p q p ∧ q
T T T
T F F
F T F
F F F
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Disjunction, and the “exclusive or”

• Def. For propositions p and q, p ∨ q (“p or q”, “dis-
junuction”) is false if and only if both p and q are
false.

• The truth table of the disjuction operator is:

p q p ∨ q
T T T
T F T
F T T
F F F

• Note that in English p or q might mean:

· exclusive or, as in “Soup or salad comes with an
entrée”, or

· inclusive or, as in “The prerequisites for this course
are: Math100 or CS100”.

• The logical or (disjunction) is inclusive, but we do

have the exclusive or, ⊕, as well:

p q p⊕ q
T T F
T F T
F T T
F F F
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Our first claim

Claim.

p⊕ q is equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

Proof. Via truth tables:

p q p⊕ q
T T F
T F T
F T T
F F F

while

p q ¬p ¬q p ∧ ¬q q ∧ ¬p (p ∧ ¬q) ∨ (¬p ∧ q)
T T F F F F F
T F F T T F T
F T T F F T T
F F T T F F F
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