The central limit theorem

e Consider a sequence X} of Bernoulli (p) trials.

e By the (strong) LLN we know that % will converge
to p.

e In particular, the limit is deterministic, there is noth-
ing random about it anymore.

e What is the limit of W?

e This makes sense in light of what we discovered last
time: > 7 X is concentrated in an interval of size
cy/n about its mean np.

e A different type of limit is encountered if we normalize
by /n instead of n.

e The following graphs depict the pmf of
& D1 Xk — 1P
V(L = p)
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The central limit theorem

e The curve that you saw in all the graphs was that of
6—332/2
p(z) = N
o [f I tell you that this limit holds for a sequence of
properly normalized Poisson iid random variables can

you guess what the normalization is?

e Theorem. Suppose X are a sequence of iid random
variables with mean p and variance o®. Then

X, — 1 @
lim Pr (Zk:l F R < a) = —/ e 12,
n—00 \/n0-2 \/ 21 o
e The continuous distribution on the rhs is called the
normal or Gaussian distribution.




Conditional Expectation

o If X is the result of a fair die toss then E(X) = 7/2.

e Suppose we are given that X is even. Will that change
the expected value?

e Now there are only three equally likely results: 2, 4,
& 6, so the conditional expectation will be 4.

e Def. FE(X|A) the conditional expectation of X
given A is defined for A with Pr(A) > 0 by:

E(X|A) = Z:UPI‘ = z|A).

e Example. Find EF(X|X isodd). Let A = {w
X(w) =1,3,5}. Then

E(X|A) = ZxPr = z|A)

|« Pr({X =2}nA)
=2 Pr(A)
1/6 . 1/6

=1--+3.- - +5.

RV AT

e Note that in this example
E(X)=T7/2=(3+4)/2=E(X|A)/2+ E(X|A)/2.
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Theorem: For all events A such that Pr(A), Pr(A4) > 0:
E(X)=E(X|A)Pr(A) + E(X|A)Pr(A)

—Zx Pr{X =z} NA)+Pr({X =2} NA)

= Zx | Pr(X = z|A) Pr(A)
+ Pr(X = z|A) Pr(A)]
= Z x Pr(X = z|A) Pr(A)]

+ [z Pr(X = z|A) Pr(4)]
= E(X|A)Pr(A) + E(X]A) Pr(A)



Example

o | toss a fair die. If it lands with 3 or more, I toss 5
times a coin with Pr(H) = py. If it lands with less

than 3, I toss b times a coin with Pr(H) = p,. What
is the expected number of heads, X7

e Let A be the event that the die lands with 3 or more.
e Clearly, Pr(A) =2/3.

e What is F(X|A)?

e Conditioned on A, X is binomial B, ,, so

E(X|A) =np;.

e Similarly for A, so by the previous theorem,

E(X) = E(X|A)Pr(A) + E(X[A) Pr(A)

2_|_ 1
=Nnp1-—+npy - —.
P1 3 P2 3



The Rabin-Miller Test

e Input:
-n =2+ 1 where t is odd and s € N
-be{l,2,...,n—1}
e Trnv: Does exactly one of the following hold?
b =1 (mod n) or
b= —1 (mod n) forone 0 < j <s— 1.
e Claim.

- If n is prime, Tgas(b,n) returns “yes” for all b €
(1,2,...,n—1V.

- If m is composite then for at least 3/4 of those bs
Tgra(b,n) returns “no” (i.e. n is a composite).

e Recall that a random primality test randomly draws
numbers b € {1,...,n — 1} and asks whether b is a
witness to n’s primality, or whether T rps(b, n) returns

44 )

yes’.

e Suppose n is a composite and that we can truly create
a uniform independent sample of bs.

e Let X count the number of tests till we hit a negative
result. What is the distribution of X7
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e X is a geometric random variable with p > 3/4 (suc-
cess = Trar(b, n) declares n is not a prime, or returns
CCnO77 ) .

e What is the expected number of tests we'll perform
before we get a negative one?

e H(X)=1/p=4/3.
e What is the probability that we will fail in our first

40 tests?

(1-p)-(1-p)...1-p) < (%)4ON1024.

N
hd
40 times
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Contention Resolution

e One server, n unsaturable processes (the service can
be bandwidth for example).

e Only one process can access the server at any round.

e [f two or more processes try to gain access at the same
time none gets 1t.

e How to share the resources without a central controller
or Inter-communication?

)

e Randomization is at the core of the “symmetry-breaking’
protocol.

e At each round each process randomly tries to gain
access with probability p independently of anything
else.

o Let A;; be the event: the ¢th process attempts to
access the server at round ¢.

e What is Pr(A;)?

®D.

e What is the probability that the ¢th process will suc-
ceed in that attempt?
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e Let Sy be the that event: Sy = Ay N (NjAj).
e By the independence,
Pr(Sy) = Pr(Ai) | [ Pr(4;) = p(1 —p)" .
JF
e How can we maximize o« = Pr(Sy)?

e Consider f(p) = p(1 —p)" " for p € (0,1): it has a
maximum at p = 1/n.

= 1(1- —)n_l is the maximal possible value for
(Szt) this will now assumed to be the choice.

13



How long is the average wait?

e Let X, denote the first round that ¢ gains access to
the server.

e What is the distribution of X7
e Geometric with p = Pr(Sj) = +(1 — %)n_l.

e Since 2 < (1 — —)n_1 < 1, the expected waiting time
for serwce E(X;) =1/ p, satlsﬁes

2n < E(X;) < en.

e Compare that with an optimal strategy of round robin
(requires a controller) where the expected waiting time
is roughly n /2.
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Average exhaustive service time

e What is the average waiting time for all the processes
to be serviced?

e Let YV be the time (= number of rounds) it took for
servicing all the processes.

e Let’s order the processes according to their service
time.

- Let Y7 be the time (round) the first process was
serviced.

- Let Y5 be the additional time it took for the second
process to be serviced.

- Note that the “second process was service” is not
the same as the “second time a process gained ac-
cess to the server” (why?).

- More generally, let Y;. be the time it took between
the first servicing of the k — 1st and the kth pro-
cesses.

- What is the connection between Y and Y7, Y5, ..., Y,,”7

Y =311
- What is the distribution of Y77
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- Geometric with
1
P1 = PI”(U?ZPSZ'Q =N Pl“(SZt> = n5<1 — —)

- What is the distribution of Y57

. Geometric with
1 n—1

1
p2 = Pr(U,_5Sit) = (n — 1) (1 — ﬁ)
- What is the distribution of Y7
- Geometric with

o= Pr{UL,S0) = (n— k) H1 =

- n 1

— (1— l)”_ln— k+1

— nlz_

= E(Y) =

G
since E(Y') = >, E(Y), and E(Yk) pi.
o Def. The nth harmonic number is H(n) = 5, %

e By comparing H(n) to [ 1 one can show:
log(n+1) < H(n) < 1+ logn,
= 2nlogn+1) < E(Y) < en(1 +logn).
= E(Y) =06(nlogn).
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Distribution of service waiting time

e What is the probability that the ¢th process will not
oain access in the first ¢ rounds?

o Let F}; be that event. Then Fj; = N._,S;,, so

e For t = ¢|ne],

I |

A
=
|
|

|

~—
—

|
\‘/
S
)

[

Using (1 —1/z)* < 1/eforz > 1

1
< —.
= e

e Choosing ¢ = logn, for t =logn - [ne]:
1
.



Distribution time of servicing ’em all

e What is the probability that servicing all the processes
would take more than ¢ rounds?

e This is Pr ( " E-t>.

e By the inclusion-exclusion formula

Pr (U, Fy) ZPT it)

—ZPF ztﬂth ZPr zth]thkt>

1<J 1<jg<k

1 1 n—1
Pr(F, :[1——1—— }

() = [1-—(1- )

similarly,

Pr(F; N F 2 L
By =[i-20- 4"

r(Fi jt) n( n)

and more generally,

Pf(ﬂlt M Egt M... E;J)

|
1
—_
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e This can be computed for any values of n and ¢. How-
ever to get an idea about how this distribution looks

like it pays to concentrate only on the first term of the
inclusion-exclusion formula:

e For t =mlogn - Me}:

Pr Z Pr(F;) = nPr(Fy)
1 1n1t
a1 22 }
oty
nel M logn
<nl(1-— }
_n[( ne>
1 1
<n =

elogn™ nm—1
e For example, for t = 3logn - [ne|,
1
Pr(uU', ) < —
( i=1 t) = 2
e What about the terms we neglected?

e First note that what we derived is a valid upper bound.
Next consider for example,

9 1 n—1-¢ 2\ ne 6logn
2 n n 2 ne
< n 1 1
=19 elognG < 2—77/4
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e The “higher order” terms are going to be even smaller.

e On the other hand it’s not difficult to prove that for

n > 2

[1 L 1)71_1 .
n —_— —_ P
n n n?).l’

so the first term indeed dominates the inclusion ex-
clusion.
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Finding the median

e Given a list of numbers S = {ay, as, ..., asy,1} find
the median: the m + 1st largest element (if n = 2m
we look for the mth largest element).

e Simple solution: sort the list and report the median.

e Cost: sorting is at least O(nlogn) (number of com-
parisons required).

e Can we do better?
e Yes, but we need to solve a more general problem.

e The function Select(S, k) returns the kth smallest
element in S.

e Forn = 2m+1 what are: Select(S, 1), Select(S, m),
Select(S,n)?

e To find the minimum and maximum we clearly do not
need more than n comparisons.

e [t is much less obvious that this is true in general for
Select(95, k).
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Select(S, k)

e On input S = {ay,as,...,a,} and k:

- Randomly choose a splitter or pivot a; € S.

- Split S'into S~ :={a; : a; < a;} and ST = {a; :
a; > a;} (requires n — 1 comparisons).

If|S7] =k — 1 return a;.

- Else if |ST| > k return Select(S™, k).

- Else return Select(S™, k — (|S7|+1)).

e Note that the algorithm is called recursively with a
strictly smaller set therefore it has to stop.

e Let T'(n) be the running time (number of compar-
isons) required by Select for an input of size n.

e Note that T'(n) is a random variable.
e How big can it be?

e cn?: if we look for the median and keep choosing a
pivot which is at either ends:

Tn)>n+n—-1)+n—-2)+---+n/2.

e But we have to be extremely unfortunate for this to
happen.
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Average of T'(n)

e We say the algorithm is in phase j if the size of the cur-
rently considered S is between n(3/4) and n(3/4)" .

e Let Y be the number of steps we spend at phase j.

e Clearly,
[logg 4 1]
n)< > Y-n(3/4).
j=0
Therfore
[logg 4 1]
BTm < S n(3/4) - E(Y))
j=0

e Choosing any number which is not in the first or
last quadrants would leave us with both S~ and S™*
smaller than 3/4 the size of the current S thereby

ending phase j.

o Thus, E(Y;) < 1}2 = 2 and it follows that

[logz /4 1]
E[T(n)] <2n Y (3/4) <8n.
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Logic

e Logic is a tool for formalizing reasoning.

e We want to be able to systematically analyze argu-
ments like

- Borogroves are mimsy whenever it is brillig.
- It is now brillig and this thing is a borogrove.

- Hence this thing is mimsy:.
e [s this a valid conclusion?
e s the following a valid argument: given that

- All lions are fierce.

- Some lions do not drink coffee.

e Can we conclude that some fierce creatures do not
drink coffee?
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Proposition Logic

e To formalize the reasoning process, we need to restrict
the kinds of things we can say:.

e Propositional logic is particularly restrictive.

e A proposition is a statement that is either true or false
but not both.

e The syntaxr of propositional logic tells us what are
legitimate formulas.

e We start with primitive or atomic propositions. Those
are determined to be true or false from the context.
For example,

- Washington D.C. is the capital of USA.
14+1=2.

-4 is odd.

- The empty set has 0 elements.

- Read this caretully - not a proposition.

e We can then form compound propositions using con-
nectives like:

— . not A : and V i or

—: implies «——: equivalent (if and only if)
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Negation operator (not)

e Def. Given a proposition p, the negation of p, de-
noted by —p (read: “not p”) is true if and only if p is
false.

e Intuitively, —p is the statement: “It is not the case
that p”.

e Example: if p =4 is odd, then —p is the proposition
“It is not the case that 4 is odd”, or 4 is not odd.

- Aside: Note that this does not necessarily imply
that 4 is even unless we have more information
such as: “every number is either odd or even” and
that “4 is a number”.

e Mathematically we can define the negation operator
p|p
through its truth table: | T | F
F|T
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Conjunction

e Def. For propositions p and ¢, p A ¢ (“p and ¢”,
“conjunction”) is true if and only if both p and ¢ are
true.

e Example: the proposition ((1 4+ 1 =2) A (Toronto
is the capital of Canada) is true if and only if both
propositions are true.

e The truth table of the conjunction operator is:

pP/Ag

Sl s e IS
3 e
o >
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Disjunction, and the “exclusive or”

e Def. For propositions p and ¢, pV ¢ (“p or ¢, “dis-
junuction”) is false if and only if both p and ¢ are
false.

e The truth table of the disjuction operator is:

p qpVgq
TT| T
TF T
FT| T
FFl F

e Note that in English p or ¢ might mean:
- exclusive or, as in “Soup or salad comes with an
entrée”, or
- inclusive or, as in “The prerequisites for this course

are: Math100 or CS100”.

e The logical or (disjunction) is inclusive, but we do
P qpDbq

have the exclusive or, @, as well:

=
sl el
= 3
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Our first claim

Claim.
p @ q is equivalent to (p A —q) V (—p A q).
Proof. Via truth tables:

p qlp®q

TT F

TF T

FT T

FF F

while

P g —p ~qpA=q gAN-p (pA—q)V(=pAq)
TTF F| F F F
TFF T| T F T
FT T F| F T T
FF T T| F F F

29




