
Expectation is linear

• So far we saw that E(X + Y ) = E(X) + E(Y ).

• Let α ∈ R. Then,

E(αX) =
∑

ω

(αX)(ω) Pr(ω)

=
∑

ω

αX(ω) Pr(ω)

= α
∑

ω

X(ω) Pr(ω)

= αE(X).

• Corollary. For α, β ∈ R,

E(αX + βY ) = αE(X) + βE(Y ).
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Expectation of ϕ(X)

• X is a random variable and ϕ : R 7→ R.

• We want the expectation of Y = ϕ(X).

• We can compute

fY (y) = Pr(ϕ(X) = y) = Pr({ω : X(ω) ∈ ϕ−1(y)}),
and use E(Y ) =

∑
y∈RY

yfY (y), where RY is the
range of Y .

• Alternatively we have,

Claim. E(ϕ(X)) =
∑

x∈RX
ϕ(x)fX(x).

Proof.

E(ϕ(X)) =
∑

ω

ϕ(X(ω)) Pr(ω)

=
∑

x∈RX

∑

ω:X(ω)=x

ϕ(X(ω)) Pr(ω)

=
∑

x

∑

ω:X(ω)=x

ϕ(x) Pr(ω)

=
∑

x

ϕ(x)fX(x).

• Example. For a random variable X ,

E(X2) =
∑

x

x2fX(x).
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Variance of X

• Consider the following three distributions:

fX(x) =

{
1 x = 0

0 otherwise

fY (y) =

{
1/2 y = −1, 1

0 otherwise

fZ(z) =

{
1/2 z = −100, 100

0 otherwise

• What are the expectations of these distributions?

• Does the expectation tell the “whole story”?

• Clearly Z is much more spread about its mean than
X and Y .

• An intuitively appealing measurement of the spread of
X about its mean µ = E(X) is given by E(|X−µ|).

• Def. For convenience the variance of X is defined
as

V (X) = E(X − µ)2.

• Def. The standard deviation is σ(X) =
√

V (X).
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Examples

• Let X be Bernoulli(p). We saw that µ = p.

V (X) = (0− p)2 · (1− p) + (1− p)2 · p
= p(1− p)[p + (1− p)]

= p(1− p).

• Claim. V (X) = E(X2)− µ2.
Proof.

E(X − µ)2 = E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + E(µ2)

= E(X2)− 2µ2 + µ2

= E(X2)− µ2.

• X is the outcome of a roll of a fair die.

· We saw that E(X) = 7/2.

· E(X2) = 12 · 1
6 + 22 · 1

6 + · · · + 62 · 1
6 = 91

6 .

· So, V (X) = 91
6 −

(
7
2

)2
= 35

12.
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V (X + Y )

• Let X and Y be random variables with µ = E(X)
and ν = E(Y ).

• Def. The covariance of X and Y is

Cov(X,Y ) = E(XY )− E(X) · E(Y ).

• Claim. V (X +Y ) = V (X)+V (Y )+2 ·Cov(X, Y ).

• Proof. E(X + Y ) = µ + ν, so

V (X + Y ) = E[(X + Y )2]− (µ + ν)2

= E(X2 + 2XY + Y 2)− (µ2 + 2µν + ν2)

= [E(X2)− µ2] + [E(Y 2)− ν2]

+ 2 · [E(XY )− µν]
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Suppose X and Y are independent

• Claim. If X and Y are independent Cov(X, Y ) = 0.

• Proof.

E(XY ) =
∑

ω

(XY )(ω) Pr(ω)

=
∑

x∈RX

∑

y∈RY

∑

ω:X(ω)=x , Y (ω)=y

X(ω) · Y (ω) · Pr(ω)

=
∑

x

∑
y

∑

ω:X(ω)=x , Y (ω)=y

x · y · Pr(ω)

=
∑

x

∑
y

x · y · Pr(X = x, Y = y)

=
∑

x

∑
y

x · y · Pr(X = x) · Pr(Y = y)

=
∑

x

x · Pr(X = x)
∑

y

y · Pr(Y = y)

= E(X) · E(Y ).

• Corollary. If X and Y are independent

V (X + Y ) = V (X) + V (Y ).
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The variance of Bn,p

• Corollary. If X1, . . . Xn are independent then

V (X1+X2+· · ·+Xn) = V (X1)+V (X2)+. . . V (Xn).

Proof. By induction but note that we need to show
that X1 + · · · + Xk−1 is independent of Xk.

• Let X be a Bn,p random variable.

• Then X =
∑n

1 Xk where Xk are independent Bernoulli
p random variables. So,

V (X) = V
( n∑

1

Xk

)
=

n∑
1

V (Xk) = np(1− p).

• For a fixed p the variance increases with n.

• Does this make sense?

• For a fixed n the variance is minimized for p = 0, 1
and maximized for p = 1/2.

• Does it make sense?

• Expectation and variance are just two “measurements”
of the distribution. They cannot possibly convey the
same amount of information that is in the distribution
function.

• Nevertheless we can learn a lot from them.
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Markov’s Inequality

• Theorem. Suppose X is a nonnegative random vari-
able and α > 0. Then

Pr(X ≥ α) ≤ E(X)

α
.

• Proof.

E(X) =
∑

x

x · fX(x)

≥
∑
x≥α

x · fX(x)

≥
∑
x≥α

α · fX(x)

= α
∑
x≥α

fX(x)

= α · Pr(X ≥ α).

• Example. If X is B100,1/2,

Pr(X ≥ 100) ≤ 50

100
.

This is not very accurate: the correct answer is . . .
2−100 ∼ 10−30.

• What would happen if you try to estimate this way
Pr(X ≥ 49)?
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Chebyshev’s Inequality

• Theorem. X is a random variable and β > 0.

Pr(|X − µ| ≥ β) ≤ V (X)

β2
.

• Proof. Let Y = (X − µ)2. Then,

|X − µ| ≥ β ⇐⇒ Y ≥ β2,

So

{ω : |X(ω)− µ| ≥ β} = {ω : Y (ω) ≥ β2}.
In particular, the probabilities of these events are the
same:

Pr(|X − µ| ≥ β) = Pr(Y ≥ β2).

Since Y ≥ 0 by Markov’s inequality

Pr(Y ≥ β2) ≤ E(Y )

β2
.

Finally, note that E(Y ) = E[(X − µ)2] = V (X).
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Example

• Chebyshev’s inequality gives a lower bound on how
well is X concentrated about its mean.

• Suppose X is B100,1/2 and we want a lower bound on
Pr(40 < X < 60).

• Note that

40 < X < 60 ⇐⇒ −10 < X − 50 < 10

⇐⇒ |X − 50| < 10

so,

Pr(40 < X < 60) = Pr(|X − 50| < 10)

= 1− Pr(|X − 50| ≥ 10).

Now,

Pr(|X − 50| ≥ 10) ≤ V (X)

102

=
100 · (1/2)2

100

=
1

4
.

So,

Pr(40 < X < 60) ≥ 1− V (X)

102
=

3

4
.

• This is not too bad: the correct answer is ∼ 0.9611.
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The law of large numbers (LLN)

• You suspect the coin you are betting on is biased.

• You would like to get an idea on the probability that
it lands heads. How would you do that?

• Flip n times and check the relative number of Hs.

• In other words, if Xk is the indicator of H on the kth
flip, you estimate p as

p ≈
∑n

k=1 Xk

n
.

• The underlying assumption is that as n grows bigger
the approximation is more likely to be accurate.

• Is there a mathematical justification for this intuition?
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LLN cont.

• Consider the following betting scheme:

· At every round the croupier rolls a die.

· You pay $1 to join the game in which you bet on
the result of the next 5 rolls.

· If you guess them all correctly you get 65 = 7776
dollars, 0 otherwise.

· How can you estimate if this is a fair game?

· Study the average winnings of the last n gamblers.

• Formally, let Xk be the winnings of the kth gambler.

• We hope to estimate E(Xk) by

E(Xk) ≈
∑n

k=1 Xk

n
.

• Is there a mathematical justification for this intuition?

• Is the previous problem essentially different than this
one?
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Example of the (weak) LLN

Consider again the binomial p = 1/2 case. With

Sn =

n∑

k=1

Xk,

we expect, for example, that

Pr(0.4 <
Sn

n
< 0.6) = Pr(0.4n < Sn < 0.6n)

will be big (close to 1) as n increases.
As before,

Pr(0.4n < Sn < 0.6n) = Pr(−0.1n < Sn − 0.5n < 0.1n)

= Pr(|Sn − 0.5n| < 0.1n)

= 1− Pr(|Sn − 0.5n| ≥ 0.1n).

As before we can bound

Pr(|Sn − 0.5n| ≥ 0.1n) ≤ V (Sn)

(0.1n)2

=
n · (1/2)2

0.01n2

=
1

0.04n
.

⇒ Pr(0.4 <
Sn

n
< 0.6) ≥ 1− 1

0.04n
−−−→
n→∞

1.

Are any of 0.4, 0.6 or p = 1/2 special?
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The (weak) law of large numbers

• The previous example can be generalized to the fol-
lowing statement about a sequence of Bernoulli(p) tri-
als: for any ε > 0,

Pr
(∣∣

∑n
k=1 Xk

n
− p

∣∣ ≥ ε
)
−−−→
n→∞

0.

• A further generalization allows us to replace p by
E(Xk).

• Suppose X1, X2, . . . are a sequence of iid (indepen-
dent and identically distributed) random variables.
Then, with µ = E(Xk)

Pr
(∣∣

∑n
k=1 Xk

n
− µ

∣∣ ≥ ε
)
−−−→
n→∞

0.

• The proof is essentially identical to the previous one
using Chebyshev’s inequality.
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The binomial dispersion

• Sn is a binomial B(n,p) random variable.

• How tightly is it concentrated about its mean?

• In particular, how large an interval about the mean
should we consider in order to guarantee that Sn is in
that interval with probability of at least 0.99?

• Can you readily name such an interval?

• Can we be more frugal?

• We know that if we take an interval of length, say,
2 · n/10 then

Pr(np− n/10 < Sn < np + n/10) −−−→
n→∞

1.

• Why is that true?

np− n/10 < Sn < np + n/10

⇐⇒ −1/10 <
Sn − np

n
< 1/10

⇐⇒ ∣∣Sn

n
− p

∣∣ < 1/10,

and by the LLN

Pr
(∣∣Sn

n
− p

∣∣ < 1/10
)
−−−→
n→∞

1.
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• Therefore, for all “sufficiently large” n,

Pr(np− n/10 < Sn < np + n/10) ≤ 0.99.

• Two problems:

· We didn’t really say what n is?

· We are still being “wasteful” (as you will see).

• Clearly, the question is that of the dispersion of Sn

about its mean.

• Recall that the variance is supposed to (crudely) mea-
sure just that.

• Chebyshev’s inequality helps visualizing that: ∀β > 0

Pr(|X − E(X)| < β) = 1− Pr(|X − E(X)| ≥ β)

≥ 1− V (X)

β2
.

• What should β be in order to make sure that

Pr
(|X − E(X)| < β

) ≥ 0.99 ?

• Need: V (X)
β2 ≤ 0.01, or

β ≥
√

100V (X) = 10σ(X).

• Applying this general rule to the binomial Sn we have

P
(|Sn − np| < 10

√
np(1− p)

) ≥ 0.99.
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• More generally,

Pr
(|Sn − np| < ασ(Sn)

) ≥ 1− 1

α2
.

• Since σ(Sn) =
√

np(1− p), it means most of “the
action” takes place in an interval of size c

√
n about

np (before we had an interval of size b · n).
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Confidence interval

• What happens if we don’t know p?

• We can still repeat the argument above to get:

Pr(|Sn − np| < 5
√

n) ≥ 1− V (Sn)

(5
√

n)
2

= 1− np(1− p)

25n

≥ 1− 1/4

25
= 0.99,

since p(1− p) ≤ 1/4.

• It follows that for any p and n:

Pr
(∣∣Sn

n
− p

∣∣ <
5√
n

)
≥ 0.99.

• So with probability of at least 0.99, Sn/n is within a
distance of 5/

√
n of its unknown mean, p.

• This can help us design an experiment to estimate p.

• For example, suppose that a coin is flipped 2500 times
and that S = S2500 is the number of heads.

• Then with probability of at least 0.99, S/2500 is within
5/50 = 0.1 of p.
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• Equivalently, with probability of at least 0.99 the in-
terval (S/2500− 0.1, S/2500 + 0.1) contains p.

• Such an interval is called a 99% confidence interval for
p.

• For example, suppose we see only 750 heads in 2500
flips.

• Since 750/2500 = 0.3 our 99% confidence interval is
(0.3− 0.1, 0.3 + 0.1) = (0.2, 0.4).

• We should therefore be quite suspicious of this coin.

• Remark. We have been quite careless: all we used to
generate our confidence interval was Chebyshev’s in-
equality. Chebyshev’s inequality doesn’t “know” that
Sn happens to be a binomial random variable: it only
uses the mean and the variance of Sn. A more care-
ful analysis would gain us a significantly tighter 99%
confidence interval.
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