Expectation is linear

- So far we saw that $E(X + Y) = E(X) + E(Y)$.
- Let $\alpha \in \mathbb{R}$. Then,

$$
E(\alpha X) = \sum_{\omega} (\alpha X)(\omega) \Pr(\omega)
$$

$$
= \sum_{\omega} \alpha X(\omega) \Pr(\omega)
$$

$$
= \alpha \sum_{\omega} X(\omega) \Pr(\omega)
$$

$$
= \alpha E(X).
$$

• Corollary. For $\alpha, \beta \in \mathbb{R}$,

$$
E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y).
$$

Expectation of $\varphi(X)$

- X is a random variable and $\varphi : \mathbb{R} \mapsto \mathbb{R}$.
- We want the expectation of $Y = \varphi(X)$.
- We can compute

 $f_Y(y) = Pr(\varphi(X) = y) = Pr(\{\omega : X(\omega) \in \varphi^{-1}(y)\}),$ and use $E(Y) = \sum_{y \in \mathcal{R}_Y} y f_Y(y)$, where \mathcal{R}_Y is the range of Y .

• Alternatively we have, Claim. $E(\varphi(X)) = \sum_{x \in \mathcal{R}_X} \varphi(x) f_X(x)$. Proof.

$$
E(\varphi(X)) = \sum_{\omega} \varphi(X(\omega)) \Pr(\omega)
$$

=
$$
\sum_{x \in \mathcal{R}_X} \sum_{\omega: X(\omega) = x} \varphi(X(\omega)) \Pr(\omega)
$$

=
$$
\sum_{x} \sum_{\omega: X(\omega) = x} \varphi(x) \Pr(\omega)
$$

=
$$
\sum_{x} \varphi(x) f_X(x).
$$

• Example. For a random variable X ,

$$
E(X^2) = \sum_x x^2 f_X(x).
$$

Variance of X

• Consider the following three distributions:

$$
f_X(x) = \begin{cases} 1 & x = 0 \\ 0 & \text{otherwise} \end{cases}
$$

$$
f_Y(y) = \begin{cases} 1/2 & y = -1, 1 \\ 0 & \text{otherwise} \end{cases}
$$

$$
f_Z(z) = \begin{cases} 1/2 & z = -100, 100 \\ 0 & \text{otherwise} \end{cases}
$$

- What are the expectations of these distributions?
- Does the expectation tell the "whole story"?
- Clearly Z is much more spread about its mean than X and Y .
- An intuitively appealing measurement of the spread of X about its mean $\mu = E(X)$ is given by $E(|X - \mu|)$.
- Def. For convenience the *variance* of X is defined as

$$
V(X) = E(X - \mu)^2.
$$

• Def. The standard deviation is $\sigma(X) = \sqrt{V(X)}$.

Examples

• Let X be Bernoulli (p) . We saw that $\mu = p$.

$$
V(X) = (0 - p)2 \cdot (1 - p) + (1 - p)2 \cdot p
$$

= $p(1 - p)[p + (1 - p)]$
= $p(1 - p)$.

• Claim. $V(X) = E(X^2) - \mu^2$. Proof.

$$
E(X - \mu)^2 = E(X^2 - 2\mu X + \mu^2)
$$

= $E(X^2) - 2\mu E(X) + E(\mu^2)$
= $E(X^2) - 2\mu^2 + \mu^2$
= $E(X^2) - \mu^2$.

 \bullet X is the outcome of a roll of a fair die.

We saw that
$$
E(X) = 7/2
$$
.
\n
$$
E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}.
$$
\nSo, $V(X) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$.

$$
V(X+Y)
$$

- Let X and Y be random variables with $\mu = E(X)$ and $\nu = E(Y)$.
- Def. The *covariance* of X and Y is

$$
Cov(X, Y) = E(XY) - E(X) \cdot E(Y).
$$

- Claim. $V(X + Y) = V(X) + V(Y) + 2 \cdot Cov(X, Y)$.
- Proof. $E(X + Y) = \mu + \nu$, so

$$
V(X + Y) = E[(X + Y)^{2}] - (\mu + \nu)^{2}
$$

= $E(X^{2} + 2XY + Y^{2}) - (\mu^{2} + 2\mu\nu + \nu^{2})$
= $[E(X^{2}) - \mu^{2}] + [E(Y^{2}) - \nu^{2}]$
+ $2 \cdot [E(XY) - \mu\nu]$

Suppose X and Y are independent

- Claim. If X and Y are independent $Cov(X, Y) = 0$.
- Proof.

$$
E(XY) = \sum_{\omega} (XY)(\omega) \Pr(\omega)
$$

=
$$
\sum_{x \in R_X} \sum_{y \in R_Y} \sum_{\omega:X(\omega)=x, Y(\omega)=y} X(\omega) \cdot Y(\omega) \cdot \Pr(\omega)
$$

=
$$
\sum_{x} \sum_{y} \sum_{\omega:X(\omega)=x, Y(\omega)=y} x \cdot y \cdot \Pr(\omega)
$$

=
$$
\sum_{x} \sum_{y} x \cdot y \cdot \Pr(X=x, Y=y)
$$

=
$$
\sum_{x} \sum_{y} x \cdot y \cdot \Pr(X=x) \cdot \Pr(Y=y)
$$

=
$$
\sum_{x} x \cdot \Pr(X=x) \sum_{y} y \cdot \Pr(Y=y)
$$

=
$$
E(X) \cdot E(Y).
$$

• Corollary. If X and Y are independent

$$
V(X + Y) = V(X) + V(Y).
$$

The variance of $B_{n,p}$

- Corollary. If $X_1, \ldots X_n$ are independent then $V(X_1+X_2+\cdots+X_n)=V(X_1)+V(X_2)+\ldots V(X_n).$ **Proof.** By induction but note that we need to show that $X_1 + \cdots + X_{k-1}$ is independent of X_k .
- Let X be a $B_{n,p}$ random variable.
- Then $X =$ \sum_{n} $\frac{n}{1}\,X_k$ where X_k are independent Bernoulli p random variables. So,

$$
V(X) = V\left(\sum_{1}^{n} X_{k}\right) = \sum_{1}^{n} V(X_{k}) = np(1 - p).
$$

- For a fixed p the variance increases with n .
- Does this make sense?
- For a fixed *n* the variance is minimized for $p = 0, 1$ and maximized for $p = 1/2$.
- Does it make sense?
- Expectation and variance are just two "measurements" of the distribution. They cannot possibly convey the same amount of information that is in the distribution function.
- Nevertheless we can learn a lot from them.

Markov's Inequality

• Theorem. Suppose X is a nonnegative random variable and $\alpha > 0$. Then

$$
\Pr(X \ge \alpha) \le \frac{E(X)}{\alpha}.
$$

• Proof.

$$
E(X) = \sum_{x} x \cdot f_X(x)
$$

\n
$$
\geq \sum_{x \geq \alpha} x \cdot f_X(x)
$$

\n
$$
\geq \sum_{x \geq \alpha} \alpha \cdot f_X(x)
$$

\n
$$
= \alpha \sum_{x \geq \alpha} f_X(x)
$$

\n
$$
= \alpha \cdot \Pr(X \geq \alpha).
$$

• Example. If X is $B_{100,1/2}$,

$$
\Pr(X \ge 100) \le \frac{50}{100}.
$$

This is not very accurate: the correct answer is \ldots $2^{-100} \sim 10^{-30}$.

• What would happen if you try to estimate this way $Pr(X \ge 49)$?

Chebyshev's Inequality

- Theorem. X is a random variable and $\beta > 0$. $Pr(|X - \mu| \geq \beta) \leq$ $V(X)$ $\frac{1}{\beta^2}$.
- Proof. Let $Y = (X \mu)^2$. Then, $|X - \mu| \ge \beta \iff Y \ge \beta^2$,

So

$$
\{\omega: |X(\omega) - \mu| \ge \beta\} = \{\omega: Y(\omega) \ge \beta^2\}.
$$

In particular, the probabilities of these events are the same:

$$
\Pr(|X - \mu| \ge \beta) = \Pr(Y \ge \beta^2).
$$

Since $Y \geq 0$ by Markov's inequality

$$
\Pr(Y \ge \beta^2) \le \frac{E(Y)}{\beta^2}.
$$

Finally, note that $E(Y) = E[(X - \mu)^2] = V(X)$.

Example

- Chebyshev's inequality gives a lower bound on how well is X concentrated about its mean.
- Suppose X is $B_{100,1/2}$ and we want a lower bound on $Pr(40 < X < 60).$
- Note that

$$
40 < X < 60 \iff -10 < X - 50 < 10
$$
\n
$$
\iff |X - 50| < 10
$$

so,

$$
Pr(40 < X < 60) = Pr(|X - 50| < 10) \\
= 1 - Pr(|X - 50| \ge 10).
$$

Now,

$$
\Pr(|X - 50| \ge 10) \le \frac{V(X)}{10^2}
$$

=
$$
\frac{100 \cdot (1/2)^2}{100}
$$

=
$$
\frac{1}{4}.
$$

So,

$$
\Pr(40 < X < 60) \ge 1 - \frac{V(X)}{10^2} = \frac{3}{4}.
$$

• This is not too bad: the correct answer is ~ 0.9611 .

The law of large numbers (LLN)

- You suspect the coin you are betting on is biased.
- You would like to get an idea on the probability that it lands heads. How would you do that?
- Flip *n* times and check the relative number of H s.
- In other words, if X_k is the indicator of H on the kth flip, you estimate p as

$$
p \approx \frac{\sum_{k=1}^{n} X_k}{n}.
$$

- The underlying assumption is that as n grows bigger the approximation is more likely to be accurate.
- Is there a mathematical justification for this intuition?

LLN cont.

- Consider the following betting scheme:
	- · At every round the croupier rolls a die.
	- · You pay \$1 to join the game in which you bet on the result of the next 5 rolls.
	- \cdot If you guess them all correctly you get $6^5 = 7776$ dollars, 0 otherwise.
	- · How can you estimate if this is a fair game?
	- Study the average winnings of the last n gamblers.
- Formally, let X_k be the winnings of the kth gambler.
- We hope to estimate $E(X_k)$ by

$$
E(X_k) \approx \frac{\sum_{k=1}^n X_k}{n}.
$$

- Is there a mathematical justification for this intuition?
- Is the previous problem essentially different than this one?

Example of the (weak) LLN

Consider again the binomial $p = 1/2$ case. With

$$
S_n = \sum_{k=1}^n X_k,
$$

we expect, for example, that

$$
\Pr(0.4 < \frac{S_n}{n} < 0.6) = \Pr(0.4n < S_n < 0.6n)
$$

will be big (close to 1) as n increases. As before,

$$
Pr(0.4n < S_n < 0.6n) = Pr(-0.1n < S_n - 0.5n < 0.1n)
$$
\n
$$
= Pr(|S_n - 0.5n| < 0.1n)
$$
\n
$$
= 1 - Pr(|S_n - 0.5n| \ge 0.1n).
$$

As before we can bound

$$
\Pr(|S_n - 0.5n| \ge 0.1n) \le \frac{V(S_n)}{(0.1n)^2}
$$

$$
= \frac{n \cdot (1/2)^2}{0.01n^2}
$$

$$
= \frac{1}{0.04n}.
$$

Are any of 0.4, 0.6 or $p = 1/2$ special?

The (weak) law of large numbers

• The previous example can be generalized to the following statement about a sequence of Bernoulli (p) trials: for any $\varepsilon > 0$,

$$
\Pr\left(\left|\frac{\sum_{k=1}^{n} X_k}{n} - p\right| \ge \varepsilon\right) \xrightarrow[n \to \infty]{} 0.
$$

- A further generalization allows us to replace p by $E(X_k)$.
- Suppose X_1, X_2, \ldots are a sequence of iid (independent and identically distributed) random variables. Then, with $\mu = E(X_k)$

$$
\Pr\left(\left|\frac{\sum_{k=1}^{n} X_k}{n} - \mu\right| \ge \varepsilon\right) \xrightarrow[n \to \infty]{} 0.
$$

• The proof is essentially identical to the previous one using Chebyshev's inequality.

The binomial dispersion

- S_n is a binomial $B_{(n,p)}$ random variable.
- How tightly is it concentrated about its mean?
- In particular, how large an interval about the mean should we consider in order to guarantee that S_n is in that interval with probability of at least 0.99?
- Can you readily name such an interval?
- Can we be more frugal?
- We know that if we take an interval of length, say, $2 \cdot n/10$ then

$$
\Pr(np - n/10 < S_n < np + n/10) \xrightarrow[n \to \infty]{} 1.
$$

• Why is that true?

$$
np - n/10 < S_n < np + n/10
$$
\n
$$
\iff -1/10 < \frac{S_n - np}{n} < 1/10
$$
\n
$$
\iff \left| \frac{S_n}{n} - p \right| < 1/10,
$$

and by the LLN

$$
\Pr\left(\left|\frac{S_n}{n} - p\right| < 1/10\right) \xrightarrow[n \to \infty]{} 1.
$$

• Therefore, for all "sufficiently large" n ,

$$
\Pr(np - n/10 < S_n < np + n/10) \le 0.99.
$$

- Two problems:
	- \cdot We didn't really say what *n* is?
	- · We are still being "wasteful" (as you will see).
- Clearly, the question is that of the dispersion of S_n about its mean.
- Recall that the variance is supposed to (crudely) measure just that.
- Chebyshev's inequality helps visualizing that: $\forall \beta > 0$

$$
\Pr(|X - E(X)| < \beta) = 1 - \Pr(|X - E(X)| \ge \beta) \\
\ge 1 - \frac{V(X)}{\beta^2}.
$$

• What should β be in order to make sure that

$$
\Pr(|X - E(X)| < \beta) \ge 0.99 ?
$$

• Need: $\frac{V(X)}{\beta^2} \leq 0.01$, or

$$
\beta \ge \sqrt{100V(X)} = 10\sigma(X).
$$

• Applying this general rule to the binomial S_n we have P $(|S_n - np| < 10\sqrt{np(1-p)}$ ¢ ≥ 0.99 .

• More generally,

$$
Pr (|S_n - np| < \alpha \sigma(S_n)) \geq 1 - \frac{1}{\alpha^2}.
$$

• Since $\sigma(S_n) = \sqrt{np(1-p)}$, it means most of "the action" takes place in an interval of size $c\sqrt{n}$ about ∪ۃ
∕ np (before we had an interval of size $b \cdot n$).

Confidence interval

- What happens if we don't know p ?
- We can still repeat the argument above to get:

$$
\Pr(|S_n - np| < 5\sqrt{n}) \ge 1 - \frac{V(S_n)}{(5\sqrt{n})^2}
$$
\n
$$
= 1 - \frac{np(1-p)}{25n}
$$
\n
$$
\ge 1 - \frac{1/4}{25} = 0.99,
$$

since $p(1 - p) \le 1/4$.

• It follows that for any p and n :

$$
\Pr\left(\left|\frac{S_n}{n} - p\right| < \frac{5}{\sqrt{n}}\right) \ge 0.99.
$$

- So with probability of at least 0.99, S_n/n is within a distance of $5/\sqrt{n}$ of its unknown mean, p. µU
∣
- This can help us design an experiment to estimate p .
- For example, suppose that a coin is flipped 2500 times and that $S = S_{2500}$ is the number of heads.
- Then with probability of at least 0.99, $S/2500$ is within $5/50 = 0.1$ of p.
- Equivalently, with probability of at least 0.99 the interval $(S/2500 - 0.1, S/2500 + 0.1)$ contains p.
- Such an interval is called a 99% confidence interval for p .
- For example, suppose we see only 750 heads in 2500 flips.
- Since $750/2500 = 0.3$ our 99% confidence interval is $(0.3 - 0.1, 0.3 + 0.1) = (0.2, 0.4).$
- We should therefore be quite suspicious of this coin.
- **Remark.** We have been quite careless: all we used to generate our confidence interval was Chebyshev's inequality. Chebyshev's inequality doesn't "know" that S_n happens to be a binomial random variable: it only uses the mean and the variance of S_n . A more careful analysis would gain us a significantly tighter 99% confidence interval.