Expectation is linear

e S0 far we saw that E(X +Y) = E(X)+ E(Y).
e Let « € R. Then,

E(aX) =) (aX)(w)Pr(w)

e Corollary. For o, 5 € R,
EaX +0Y)=aE(X)+ BE(Y).



Expectation of p(X)

e X is a random variable and ¢ : R — R.
e We want the expectation of Y = ¢(X).
e We can compute
fr(y) = Pr(p(X) = y) = Pr({w : X(w) € ¢ (y)}),

and use E(Y) = >, r yfy(y), where Ry is the
range of Y.

e Alternatively we have,

Claim. E(p(X)) = ¥, #(@)fx(2)
Proof.

e Example. For a random variable X,

=Y 2P fx(x)



Variance of X

e Consider the following three distributions:

(1 z =0
T) = <
Ix(z) \O otherwise
(1/2 y=—1,1
= <
() \ 0 otherwise
(1/2 2z = —100, 100
zZ) = <
f2(2) 0 otherwise

\

e What are the expectations of these distributions?
e Does the expectation tell the “whole story”?

e Clearly Z is much more spread about its mean than
X and Y.

e An intuitively appealing measurement of the spread of
X about its mean p = F(X) is given by E(|X — pl).

e Def. For convenience the variance of X is defined

V(X)=E(X —p).

e Def. The standard deviation is o(X) = 1/ V(X).
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Examples

e Let X be Bernoulli(p). We saw that u = p.

VIX)=(0—p) (1—p)+(1—p)p
=p(1—p)lp+ (1 —p)

=p(1 —p).
¢ Claim. V(X) = E(X?) — p°.
Proof.
E(X — p)’ = B(X?—2uX + 12
= B(X?) = 2uB(X) + E(1°)
= B(X?) — 20" + pi°
= B(X?) —

e X is the outcome of a roll of a fair die.
- We saw that E(X) =7/2.
CB(X?) =12 3422 2+ 462 L =5
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V(X +Y)

e Let X and Y be random variables with u = E(X)
and v = E(Y).

e Def. The covariance of X and Y 1is
Cov(X,Y)=FEXY)—- EX)-EY).
e Claim. V(X +Y)=V(X)+V(Y)+2-Cov(X,Y).
e Proof. E(X+Y)=pu+v,so
VIX+Y)=E[(X+Y)] - (u+v)
= B(X?42XY +Y?) — (4 + 2uv + 1?)
= [B(X?) = ]+ [E(Y?) = v
+2-[E(XY) — uv|



Suppose X and Y are independent

e Claim. If X and Y are independent Cov(X,Y") = 0.

e Proof.

E<XY>=Z<XY>< ) Pr(w)
Z > Z X(w)-Y(w)oPr(w)

T€Rx YyeERy w: X (w)=2,Y (w

—ZZ Z x-y-Pr(w)

x Y wX(w w)=y

:ZZx-y-PI‘ =z,Y =y)
:ZZx-y-Pr(X:$)°PY<Y:y)
:Zaj-Pr(X:x)Zy-Pr(Y:

= FE(X)-E(Y).
e Corollary. If X and Y are independent
VIX+Y)=V(X)+V(Y).



The variance of B

e Corollary. If X;,... X, are independent then
V(Xi+Xo+ -+ X,) = V(X)) +V(Xo)+... V(X,).

Proof. By induction but note that we need to show
that X7 + --- + X;_1 is independent of X}.

e Let X be a B, , random variable.

e Then X = > | X where X}, are independent Bernoulli
p random variables. So,

V(X)=V() Xp) =) VI(Xi)=np(l—p)

e For a fixed p the variance increases with n.
e Does this make sense?

e For a fixed n the variance is minimized for p = 0,1
and maximized for p = 1/2.

e Does 1t make sense?

e [ixpectation and variance are just two “measurements”
of the distribution. They cannot possibly convey the
same amount of information that is in the distribution
function.

e Nevertheless we can learn a lot from them.
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Markov’s Inequality

e Theorem. Suppose X is a nonnegative random vari-
able and o > 0. Then

e Proof.

=q -_Pr(X > ).

e Example. If X is By 12,

50
Pr(X > 100) < —.
100

This is not very accurate: the correct answer is ...
2—100 ~ 10—30

e What would happen if you try to estimate this way
Pr(X > 49)?



Chebyshev’s Inequality

e Theorem. X is a random variable and § > 0.
V(X)

Pr(X — > ) <~

e Proof. Let Y = (X — p)°. Then,
X—p|>f = Y>3
S0
{w: | X(w)—pl =8} ={w:Y(w) > 5%},

In particular, the probabilities of these events are the
same:

Pr(|X — pul > ) = Pr(Y > §°).
Since Y > 0 by Markov’s inequality

Pr(Y > 3%) < Eg)

Finally, note that E(Y) = E[(X — p)*] = V(X).




Example

e Chebyshev’s inequality gives a lower bound on how
well is X concentrated about its mean.

e Suppose X 18 Byg 1/2 and we want a lower bound on
Pr(40 < X < 60).

e Note that
0 < X <00 < —10< X —50<10
<— | X —50| <10
SO,
Pr(40 < X < 60) = Pr(|X — 50| < 10)
=1 — Pr(|X — 50| > 10).

Now,
V(X
Pr(|X — 50| > 10) < X)
102
100 (1/2)°
100
1
=7
S0,
V(X) 3
Pr(40 < X < 60) > 1 — =
r(40 < X < 60) > 02 I

e This 1s not too bad: the correct answer 1s ~ 0.9611.
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The law of large numbers (LLN)

e You suspect the coin you are betting on is biased.

e You would like to get an idea on the probability that
it lands heads. How would you do that?

e Flip n times and check the relative number of Hs.

e In other words, if X}, is the indicator of H on the kth
flip, you estimate p as

ZZ:1 Xp,
" .

p =

e The underlying assumption is that as n grows bigger
the approximation is more likely to be accurate.

e [s there a mathematical justification for this intuition?
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LLN cont.

e Consider the following betting scheme:

- At every round the croupier rolls a die.

- You pay $1 to join the game in which you bet on
the result of the next 5 rolls.

. If you guess them all correctly you get 6° = 7776
dollars, 0 otherwise.

- How can you estimate if this is a fair game?

- Study the average winnings of the last n gamblers.
e Formally, let X be the winnings of the kth gambler.
e We hope to estimate F(X}) by

X

e [s there a mathematical justification for this intuition?

e [s the previous problem essentially different than this
one?
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Example of the (weak) LLIN

Consider again the binomial p = 1/2 case. With

Sn — zn: le
k=1

we expect, for example, that

Sn
Pr(0.4 < — < 0.6) = Pr(0.4n < S,, < 0.6n)
n

will be big (close to 1) as n increases.

As before,

Pr(0.4n < S, < 0.6n) = Pr(—=0.1n < S,, — 0.5n < 0.1n)
= Pr(|S, — 0.5n| < 0.1n)
=1—Pr(|S, — 0.5n| > 0.1n).

As before we can bound

Pr(]S, — 0.5n| > 0.1n) < V(5

(0.1n)?
n-(1/2)°

0.01n2
1

0.04n

S
= Pr(04d< —<06)>1-— N
1"( n ) - 0.04n n—oco

Are any of 0.4, 0.6 or p = 1/2 special?
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The (weak) law of large numbers

e The previous example can be generalized to the fol-
lowing statement about a sequence of Bernoulli(p) tri-
als: for any € > 0,

n—aoo

e A further generalization allows us to replace p by
E(Xy).

e Suppose X1, Xo,... are a sequence of iid (indepen-

dent and identically distributed) random variables.
Then, with p = F(Xy)

Pr (‘ 2221 Xk

n

—M‘Z€>—>O-

n—aoo

e The proof is essentially identical to the previous one
using Chebyshev’s inequality.
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The binomial dispersion

e S5, 1s a binomial By, ,) random variable.
e How tightly is it concentrated about its mean?

e In particular, how large an interval about the mean
should we consider in order to guarantee that .S, is in
that interval with probability of at least 0.997

e Can you readily name such an interval?
e Can we be more frugal?

e We know that if we take an interval of length, say,
2 -n/10 then

Pr(np —n/10 < S, < np+n/10) — 1.

n—oo

e Why is that true?
np —n/10 < S, < np+n/10

S, —
" < 1/10
n

— —1/10<
Sn

— | —p| < 1/10,
n

and by the LLN

n—aoo

Pr (y% —p| <1/10) — 1,
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e Therefore, for all “sufficiently large” n,

Pr(np —n/10 < .S, < np+n/10) < 0.99.

e T'wo problems:

- We didn’t really say what n is?

- We are still being “wasteful” (as you will see).

e Clearly, the question is that of the dispersion of 5,
about its mean.

e Recall that the variance is supposed to (crudely) mea-
sure just that.

e Chebyshev’s inequality helps visualizing that: V3 > 0
Pr(|X — E(X)| < B) =1—Pr(|X — E(X)| > §)
V(X)
B
e What should 4 be in order to make sure that
Pr(|X — E(X)| <) >0.99 7

>1—

o Need: Vg;) < 0.01, or

3> +/100V(X) = 100(X).
e Applying this general rule to the binomial S,, we have
P (]S, — np| < 104/np(1 — p)) > 0.99.
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e More generally,

1
Pr (]S, — np| < ac(S,)) > 1 - peL

e Since 0(S,) = y/np(l — p), it means most of “the
action” takes place in an interval of size cy/n about
np (before we had an interval of size b - n).
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Confidence interval

e What happens if we don’t know p?

e We can still repeat the argument above to get:

Pr(|S, — np| < 5y/n) >1— V<Sn>2
(5v/n)
_ e —p)
25N
/4 _ 0.99
25 7

since p(1 —p) < 1/4.
e [t follows that for any p and n:

}%Q%Lqﬂ<$%)zaw.

e So with probability of at least 0.99, S, /n is within a
distance of 5/+/n of its unknown mean, p.

e This can help us design an experiment to estimate p.

e For example, suppose that a coin is flipped 2500 times
and that S = Sy500 1s the number of heads.

e Then with probability of at least 0.99, .5/2500 is within
5/50 = 0.1 of p.
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e Fquivalently, with probability of at least 0.99 the in-
terval (S/2500 — 0.1, 5/2500 4+ 0.1) contains p.

e Such an interval is called a 99% confidence interval for
.

e For example, suppose we see only 750 heads in 2500
flips.

e Since 750/2500 = 0.3 our 99% confidence interval is
(0.3 —0.1,0.3+0.1) = (0.2,0.4).

e We should therefore be quite suspicious of this coin.

e Remark. We have been quite careless: all we used to
generate our confidence interval was Chebyshev’s in-
equality. Chebyshev’s inequality doesn’t “know” that
S, happens to be a binomial random variable: it only
uses the mean and the variance of S,,. A more care-
ful analysis would gain us a significantly tighter 99%
confidence interval.
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