Probability Distributions

e There is a natural probabilistic structure induced on
a random variable X defined on 2:

- The set {w € 2: X(w) = ¢} is an event.

- S50 we can ask for
Pr(X =c¢)=Pr{w € Q: X(w) = c}).
Example. A biased coin (Pr(H) = 2/3) is flipped

twice.
- Let X count the number of heads:
Pr(X =0)=Pr({TT}) = (1/3)* = 1/9.
Pr(X =1)=Pr({HT, TH})=2-1/3-2/3=4/9.
Pr(X =2)=Pr({HH}) = (2/3)* = 4/9.
e Similarly we might be interested in:
Pr(X <c¢)=Pr({w e Q: X(w) < c},
and more generally, for any 7" C R:
PriX eT)=Pr{weQ: X(w) e T}.
e In our coin example,
Pr(X <1)=Pr({TT,HT,TH}) =1/9+4/9 =5/9.
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e Def. The function fx(z) := Pr(X = x) is called the
probability mass function (pmf), or the probability
distribution, or the density function of X.

e In our coin example,

r1/9 r =0
4/9 x=1
Qj —
fx(x) <4/9 9
\O otherwise

e The pmf conveys all the probabilistic information that
is relevant to X.

e A similar function that can yield the same information
1S:

e Def. The cummulative distribution function (cdf)
of X is Fx(z) := Pr(X < ux).

e In our coin example,

(0 <0
1/9 x € 0,1
Fx(z) = / | >-
5/9 € [l,2)
\1 x> 2

e Graphically:



An Example With Dice

e A pair of fair dice is rolled.

e Let X be the random variable that gives the sum of
the faces.

e F'ind the pmf of X.
- Q={(,4)]1 <1,j <6} with Pr{(i,7)} = 1/36.
- X(1,5) =147

fx(2) = Pr(X =2) = Pr({(1,1)}) = 1/36
fx(3) = Pr(X =3) = Pr({(1,2),(2,1)}) = 2/36

F(T) = Pr(X = 7) = Pe({(L.6).....(6.1)}) = 6/36

fX(IZ): = Pr(X =12) = Pr({(6,6)}) = 1/36

e The cdf can readily be found from the pmf. For ex-
ample, for z € [3,4): Fx(x) = fx(2)+ fx(3) = 3/36.



cdf from pmf and vice versa

e The pmf of X can be derived from its cdf:

- For simplicity assume that X cannot attain any
value between y < x.

AX <o} ={X <y U{X =z}
= Pr{X <z} =Pr{X <y} +Pr{X =2z}
= [x(z) = Fx(z) — Fx(y)

e Similarly we can derive the cdf from X'’s pmf:

AX <ot =Upc{ X =y}
= Ix(z) =)<, fx(y)



The Finite Uniform Distribution

e The finite uniform distribution is an equiprobable dis-
tribution.

e Suppose X : Q> {x1,x9,...,x,} where x; < x;41.

e Then, with z,,,1 :=

rl/n T = T}
gj —_—
f(z) \0 otherwise
0 <
F(z) =14 e
\k/n T € [ZCk,SCk+1>

e How do the graphs look like?
e Can you think of an example?

- Fair die, fair coin.



The Binomial Distribution

e Suppose there is an experiment with probability p of
success and thus probability ¢ = 1 — p of failure.

e Examples.

- Tossing a coin (Pr(H) = p): getting H is success,
and getting T is failure.

- Guessing the answer in a quiz of multiple choice
questions (with four possible answers for each).

e Suppose the experiment is repeated independently n
times.

. The coin is tossed n times.

- There are n questions.
e This is called a sequence of (n) Bernoulli trials.
o Key features:

- Only two possibilities: success or failure.

- Probability of success does not change from trial
to trial.

- The trials are independent.

e Def. A binomial random variable is one which counts
the number of successes in n Bernoulli trials.
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e Want to find B, ,(k), the pmf of a binomial random
variable or the binomial distribution.

e Consider the coin example with n = 5 and £ = 3.

AX =3}y={HHHTT}U{HHTHTY} ...,
where the union extends over all different sequences
with exactly 3 Hs.

- S0,
Pr({X =3)) = Pr{HHHTT}+Pr{HHTHT}+. ..
-Pr(HHHTT) = p’¢*:

{HHHTT}={H—-—-——-}n{-H - ——}
N{——H——-}n{——-T-}
N{——-—-—-T}

- What is the probability of HT' HT H?

- So the probability of every sequence with exactly
three Hs is p3q?.
- How many such sequences are there?
5
' (3)
- Therefore, Pr({X = 3}) = B;,(3) = (g>p3q2.

e More generally, the probability of getting k successes
in n Bernoulli trials with probability p of success is:

B, (k) = (Z)p’“ (1—p)""

7



The Poisson Distribution

e The number of calls per minute to a tech support
center between 5-8 pm is essentially constant (\).

e What is the probability that on an ordinary day ex-
actly k calls will come in between 6-6:01 pm?

e Binomial approximation:

- If on average a coin lands H g times in 60 flips then
the probability that the next flip is H is 1/60.

- Divide the minute into 60 secs.

- The probability that a call will arrive within any
second is roughly A/60.

- The seconds are independent.

- What is the probability that k out of the 60 seconds
will be “successtul”?

+ By, j60(k).

- What have we neglected?

- There might be more than one call per second.

- Divide the minute further into n equal intervals.
- Approximate the probability by B, 5/, (k).

- What happens when n — oo?
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This 1s the Poisson distribution:



New Distributions from Old

e Suppose X and Y are random variables on a sample
space ).

e We can form new distributions from them: X?, sin X,
X+Y, X+2Y, XY, etc.

e For example,
Y =sin X is defined by Y(w) := sin(X (w))
Z=X+4+Y as Z(w) = X(w) + Y(w).
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Examples

e A fair die is rolled.

- Let X denote the number that shows up.
- What is the pmf of Y = X??

{Y =k} ={X"=k}
—{X = —VE}U{X = VE}.

frk) = fx(VE) + fx(=Vk)
B 1/6 k=1i%,1¢ {1,2,...,6}
1o otherwise '
e A coin is flipped.

- Let X be 1 if the coin shows H and -1 if T.
cLet Y = X2
- In this case Y = 1.

e '['wo dice are rolled.

- Let X be the number that comes up on the first die,
and Y the number that comes up on the second.

- Formally, X((¢,7)) =1, Y((i,7)) = J.

11



- The random variable X +Y gives the total number
showing.

e We toss a biased coin n times (more generally, we
perform n Bernoulli trials).

- X describes the outcome of the kth trial: X, =1
if it’s heads (success), and 0 otherwise.

- > 11 X} describes the number of successes in n
Bernoulli trials.
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Independent random variables

e Let X and Y record the numbers on the first and
second die respectively:.

e What can you say about the events {X = 3}, {Y =
2}7

e What about {X =i}, {Y =j}7

e Def. The random variables X and Y are independent
if for every x and y the events { X = z} and {Y = y}
are independent.

e Example. X and Y above are independent.

e Cor. X and Y are independent if and only if
PriX=2,Y=y)=Pr(X=2)Pr(Y =y) Va,v.

e Def. The random variables X7, Xo, ..., X,, are inde-
pendent if for every x1,x9..., 2,

PrXi =21, Xo=29,.... X, = x,) =
Pr(X; = x1) Pr(Xo = 29) ... Pr(X,, = x,)

Example. { X}, the success indicators in n Bernoulli
trials are independent.
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Pairwise independence does not imply
independence

e A ball is randomly drawn from an urn containing 4
balls: blue, red, green and one which has all three
colors.

e Let X1, Xy and X3 denote the indicators of the events:
the ball has blue, red and green respectively.

e What is Pr(X; =1)7?
e 2/4 =1/2 and same for Pr(X; = 1).
e Are X; and X5 independent?
X1=0/X;=1
o Xo=0 1/4 1/4
Xo=1 1/4 1/4
e Same for X7 and X3, and for Xy and Xj.
e Are X7, Xy and X3 independent?
e No:
1/4=Pr(X;1=1,Xo=1,X3=1) #
Pr(X;=1)Pr(Xo=1)Pr(X5=1) =1/8.

e The same warning applies for independent events: {X; =
1} are only pairwise independent.
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Convolution, or the pmf of X +Y

e Suppose X and Y are independent random variables
whose range is included in {0,1,...,n}.

e Then for k € {0,1,...,2n},
{X+Y =k} =U_({(X =5} n{Y =k—j}).
e Note that many of the events might be empty.

e This is a disjoint union so

Pr(X+Y =k) =) Pr(X=4Y =k—j)
:ZPr(X:])Pr(Y:k—])

e In other words,

Fxov(R) =) fx()fy(k —j).

7=0

e The right hand side is called the convolution of fx
and fy and is denoted by fx * fy.
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Example: sum of binomials

Suppose X has distribution B,, ,, Y has distribution By, ,,
and X and Y are independent.

Pr(X+Y =k)=> Pr(X =j)Pr(Y =k —j)
— \J J
i n m
k n+m—=k
= . )p(l—p
- (5) (2 )a-s
Thus, X + Y has distribution B, 1, .
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An easier argument:
e Perform n + m Bernoulli trials.
e Let X be the number of successes in the first n.
e Let Y be the number of successes in the last m.

e On the one hand, X 4+ Y is the number of successes
n all n + m trials, and so has distribution B, 1, ).

e On the other hand,
- X has distribution B,
- Y has distribution B,,

- X and Y are independent (why?)
- 50 X 4+ Y has the distribution we are looking for.
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Expectation, or expected value

e Suppose we toss a biased coin, with Pr(H) = 2/3.

- If the coin lands heads, you get $1.
- If the coin lands tails, you get $3.

e What are your expected winnings?

- 2/3 of the time you get $1.
- 1/3 of the time you get $3
(2/3%x 1)+ (1/3 x 3) = 5/3

e Formally, we have a random variable W (for win-
nings): W(H) =1, W(T) = 3.

e The expectation of W is

EW)=Pr(H)W(H)+ Pr(T)W(T)
=Pr(W=1)x1+Pr(W=3)x3

e Def. The expectation of random variable X is

E(X)=) zfx(z).

e In other words, expectation is a weighted average.

e Technically we require that > |z|fx(x) < o0
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Examples

e What is the expected count when two dice are tossed?

- Let X be the count.
12

E(X) = ZUX(’U

i=2
1 2 3 6 1
— 9 41 3% 44" T4 10—
36Jr 36Jr 36jL Jr36Jr * 36
252
- 36
= 7.
e [.et X be the indicator function of a success in one
1
Bernoulli trial: X = SU_CCGSS.
0 failure

EX)=0-(1—p)+1-p=p.

- Note that if p € (0, 1) X cannot attain its expected
value.

e Since E(X) = > _xfx(z) is defined in terms of the
pmf of X one can talk about the expectation of a
distribution.
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Expectation of Binomials

e What is E/(B,, ), the expectation of the binomial dis-
tribution B, 7

e How many heads do you expect to get after n tosses
of a biased coin with Pr(H) = p?

E(By,) = zn: k (Z) p(1—p) "

k=0
e Note that

k(Z) N kk!(nni k)

_ (n —1)! _ n—1
(k=D (n—1) = (k—1)) (k—l)

® SO
E B — - n—1 . k—1 1 — (n—l)—(k—l)
(Bup) =) _m L pr(=p)
k=1
n—1 n — 1
—p Y ( j )pm _ p)ni
=0
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Expectation of Poisson distribution

Let X be Poisson with rate A: fx(k) = e‘Az—T, ke N.

e Does this make sense?

e Recall that, for example, X models the number of
incoming calls for a tech support center whose average
rate per minute is A.
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Expectation of geometric distribution

e We observe a sequence of Bernoulli trials (0 < p < 1).

e Let X denote the number of the first succssful trial.

e X has a geometric distribution.
fx(k)=(1—-p)'p keN"

e What is the probability that X is finite?

Y fx(ky=> (1=p)'p




The Expectation of X +Y

e Claim. E(X) =)  .,X(w)Pr(w).
e Proof. Note that
fx(x)=Pr{w e Q: X(w) =z}

= Z Pr(w).

{weX(w)=r}
Z Z Z X(w)Pr(w)
weld r {we:X(w)=z}

e Theorem. F(X +Y)=FE(X)+ E(Y)
e Proof.
E(X+Y)=) (X+Y)(w)Pr(w)

wel)

= 3 [X(w) + V() Pr(w)

wesl)

— Z X(w)Pr(w) + Z Y(w) Pr(w)

wel) wel
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Examples

e Back to the expected value of tossing two dice:

- Let X be the count on the first die, Y the count
on the second die.

EX)=EY)=(1424+34+44+5+6)/6=3.5
- 50
EX+Y)=EX)+EY)=35+35=7
e Back to the expected value of B, .

- Consider a sequence of n Bernoulli trials.

- Let X, be the indicator function of success in the
kth trial.

- We already know E(X}) = p.
- X => "1 X} is distributed B, .

- Therefore
E(X)=E() Xi)=> E(Xy)=np.
k=1 k=1

The middle equality can be derived by induction.
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