Probability Distributions

- There is a natural probabilistic structure induced on a random variable X defined on Ω :
	- The set $\{\omega \in \Omega : X(\omega) = c\}$ is an event.
	- · So we can ask for

$$
\Pr(X = c) = \Pr(\{\omega \in \Omega : X(\omega) = c\}).
$$

Example. A biased coin $(\Pr(H) = 2/3)$ is flipped twice.

 \cdot Let X count the number of heads:

$$
Pr(X = 0) = Pr({TT}) = (1/3)^{2} = 1/9.
$$

Pr(X = 1) = Pr({HT, TH}) = 2 \cdot 1/3 \cdot 2/3 = 4/9.
Pr(X = 2) = Pr({HH}) = (2/3)^{2} = 4/9.

• Similarly we might be interested in:

$$
\Pr(X \le c) = \Pr(\{\omega \in \Omega : X(\omega) \le c\},\
$$

and more generally, for any $T \subset \mathbb{R}$:

$$
\Pr(X \in T) = \Pr(\{\omega \in \Omega : X(\omega) \in T\}.
$$

• In our coin example,

 $Pr(X \le 1) = Pr({TT, HT, TH}) = 1/9 + 4/9 = 5/9.$

- Def. The function $f_X(x) := Pr(X = x)$ is called the probability mass function (pmf), or the probability distribution, or the *density function* of X.
- In our coin example,

$$
f_X(x) = \begin{cases} 1/9 & x = 0 \\ 4/9 & x = 1 \\ 4/9 & x = 2 \\ 0 & \text{otherwise} \end{cases}
$$

.

- The pmf conveys all the probabilistic information that is relevant to X.
- A similar function that can yield the same information is:
- Def. The *cummulative distribution function* (cdf) of X is $F_X(x) := \Pr(X \leq x)$.
- In our coin example,

$$
F_X(x) = \begin{cases} 0 & x < 0 \\ 1/9 & x \in [0, 1) \\ 5/9 & x \in [1, 2) \\ 1 & x \ge 2 \end{cases}.
$$

• Graphically:

An Example With Dice

- A pair of fair dice is rolled.
- Let X be the random variable that gives the sum of the faces.
- Find the pmf of X .

$$
\therefore \Omega = \{(i, j) | 1 \le i, j \le 6\} \text{ with } \Pr\{(i, j)\} = 1/36.
$$

$$
\therefore X(i, j) = i + j.
$$

$$
f_X(2) = \Pr(X = 2) = \Pr(\{(1, 1)\}) = 1/36
$$

\n
$$
f_X(3) = \Pr(X = 3) = \Pr(\{(1, 2), (2, 1)\}) = 2/36
$$

\n
$$
\vdots
$$

\n
$$
f_X(7) = \Pr(X = 7) = \Pr(\{(1, 6), \dots, (6, 1)\}) = 6/36
$$

\n
$$
\vdots
$$

\n
$$
f_X(12) = \Pr(X = 12) = \Pr(\{(6, 6)\}) = 1/36
$$

• The cdf can readily be found from the pmf. For example, for $x \in [3, 4)$: $F_X(x) = f_X(2) + f_X(3) = 3/36$.

cdf from pmf and vice versa

• The pmf of X can be derived from its cdf:

 \cdot For simplicity assume that X cannot attain any value between $y < x$.

$$
\cdot \{X \le x\} = \{X \le y\} \cup \{X = x\}
$$

 $\cdot \Rightarrow \Pr\{X \le x\} = \Pr\{X \le y\} + \Pr\{X = x\}$

$$
\cdot \Rightarrow f_X(x) = F_X(x) - F_X(y)
$$

 \bullet Similarly we can derive the cdf from X 's pmf:

$$
\cdot \{X \le x\} = \bigcup_{y \le x} \{X = y\}
$$

$$
\cdot \Rightarrow F_X(x) = \sum_{y \le x} f_X(y)
$$

The Finite Uniform Distribution

- \bullet The finite uniform distribution is an equiprobable distribution.
- Suppose $X : \Omega \mapsto \{x_1, x_2, \ldots, x_n\}$ where $x_i < x_{i+1}$.
- Then, with $x_{n+1} := \infty$

$$
f(x) = \begin{cases} 1/n & x = x_k \\ 0 & \text{otherwise} \end{cases}
$$

$$
F(x) = \begin{cases} 0 & x < x_1 \\ k/n & x \in [x_k, x_{k+1}) \end{cases}
$$

- How do the graphs look like?
- Can you think of an example?
	- · Fair die, fair coin.

The Binomial Distribution

- Suppose there is an experiment with probability p of success and thus probability $q = 1 - p$ of failure.
- Examples.
	- · Tossing a coin $(\Pr(H) = p)$: getting H is success, and getting T is failure.
	- · Guessing the answer in a quiz of multiple choice questions (with four possible answers for each).
- Suppose the experiment is repeated independently n times.
	- \cdot The coin is tossed *n* times.
	- \cdot There are *n* questions.
- This is called a sequence of (n) Bernoulli trials.
- Key features:
	- · Only two possibilities: success or failure.
	- · Probability of success does not change from trial to trial.
	- · The trials are independent.
- Def. A *binomial* random variable is one which counts the number of successes in n Bernoulli trials.
- Want to find $B_{n,p}(k)$, the pmf of a binomial random variable or the binomial distribution.
- Consider the coin example with $n = 5$ and $k = 3$.
	- $\cdot \{X = 3\} = \{HHHTT\} \cup \{HHTHT\} \dots,$ where the union extends over all different sequences with exactly 3 Hs.
	- \cdot So,

 $Pr({X = 3}) = Pr{HHHTT} + Pr{HHTHT} + ...$

$$
\begin{aligned} \text{Pf}(HHHTT) &= p^3 q^2; \\ \{HHHTT\} &= \{H----\} \cap \{-H---\} \\ \cap \{-H---\} \cap \{---T-\} \\ \cap \{---T\} \end{aligned}
$$

- What is the probability of $HTHTH$?
- · So the probability of every sequence with exactly three Hs is p^3q^2 .
- · How many such sequences are there? $\frac{110}{6}$
- $\cdot \ \binom{5}{3}$ 3
- · Therefore, $Pr({X = 3}) = B_{5,p}(3) =$ (5 3 ¢ p^3q^2 .
- More generally, the probability of getting k successes in n Bernoulli trials with probability p of success is:

$$
B_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}
$$

The Poisson Distribution

- The number of calls per minute to a tech support center between 5-8 pm is essentially constant (λ) .
- What is the probability that on an ordinary day exactly k calls will come in between 6-6:01 pm?
- Binomial approximation:
	- \cdot If on average a coin lands H μ times in 60 flips then the probability that the next flip is H is $\mu/60$.
	- · Divide the minute into 60 secs.
	- · The probability that a call will arrive within any second is roughly $\lambda/60$.
	- · The seconds are independent.
	- \cdot What is the probability that k out of the 60 seconds will be "successful"?
	- $B_{60, \lambda/60}(k)$.
	- · What have we neglected?
	- · There might be more than one call per second.
	- \cdot Divide the minute further into *n* equal intervals.
	- Approximate the probability by $B_{n,\lambda/n}(k)$.
	- What happens when $n \to \infty$?

$$
B_{n,\lambda/n}(k) = {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

=
$$
\frac{n!}{k!(n-k)!} \frac{1}{n^k} \lambda^k \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}
$$

=
$$
\left(1 - \frac{\lambda}{n}\right)^n \frac{\lambda^k}{k!} \times
$$

$$
\frac{n!}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{n-k+1}{n} \left(1 - \frac{\lambda}{n}\right)^{-k}
$$

$$
\frac{n}{n} \to e^{-\lambda} \frac{\lambda^k}{k!},
$$

where the latter is based on

$$
\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.
$$

This is the Poisson distribution:

$$
f_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \qquad k = 0, 1, 2, \dots
$$

New Distributions from Old

- \bullet Suppose X and Y are random variables on a sample space Ω .
- We can form new distributions from them: X^2 , $\sin X$, $X + Y$, $X + 2Y$, XY , etc.
- For example,
	- $\cdot Y = \sin X$ is defined by $Y(\omega) := \sin(X(\omega))$
	- $\cdot Z = X + Y$ as $Z(\omega) := X(\omega) + Y(\omega)$.

Examples

- A fair die is rolled.
	- \cdot Let X denote the number that shows up.
	- What is the pmf of $Y = X^2$?

$$
\begin{aligned} \{Y = k\} &= \{X^2 = k\} \\ &= \{X = -\sqrt{k}\} \cup \{X = \sqrt{k}\}. \end{aligned}
$$

$$
f_Y(k) = f_X(\sqrt{k}) + f_X(-\sqrt{k})
$$

=
$$
\begin{cases} 1/6 & k = i^2, i \in \{1, 2, ..., 6\} \\ 0 & \text{otherwise} \end{cases}
$$

.

- A coin is flipped.
	- \cdot Let X be 1 if the coin shows H and -1 if T.
	- \cdot Let $Y = X^2$.
	- \cdot In this case $Y \equiv 1$.
- Two dice are rolled.
	- \cdot Let X be the number that comes up on the first die, and Y the number that comes up on the second.
	- Formally, $X((i, j)) = i, Y((i, j)) = j.$
- \cdot The random variable $X + Y$ gives the total number showing.
- We toss a biased coin n times (more generally, we perform n Bernoulli trials).
	- \cdot X_k describes the outcome of the kth trial: $X_k = 1$ if it's heads (success), and 0 otherwise.
	- · $\frac{11}{\sqrt{n}}$ $k=1$ X_k describes the number of successes in n Bernoulli trials.

Independent random variables

- Let X and Y record the numbers on the first and second die respectively.
- What can you say about the events $\{X=3\},\{Y=$ 2}?
- What about $\{X = i\}, \{Y = j\}$?
- Def. The random variables X and Y are independent if for every x and y the events $\{X = x\}$ and $\{Y = y\}$ are independent.
- Example. X and Y above are independent.
- Cor. X and Y are independent if and only if

$$
\Pr(X = x, Y = y) = \Pr(X = x)\Pr(Y = y) \qquad \forall x, y.
$$

• Def. The random variables X_1, X_2, \ldots, X_n are independent if for every $x_1, x_2 \ldots, x_n$

$$
Pr(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) =
$$

$$
Pr(X_1 = x_1) Pr(X_2 = x_2) ... Pr(X_n = x_n)
$$

Example. $\{X_k\}$, the success indicators in n Bernoulli trials are independent.

Pairwise independence does not imply independence

- A ball is randomly drawn from an urn containing 4 balls: blue, red, green and one which has all three colors.
- Let X_1, X_2 and X_3 denote the indicators of the events: the ball has blue, red and green respectively.
- What is $Pr(X_1 = 1)$?
- $2/4 = 1/2$ and same for $Pr(X_i = 1)$.
- Are X_1 and X_2 independent?

$$
\bullet \begin{array}{c|c} & X_1 = 0 & X_1 = 1 \\ \hline X_2 = 0 & 1/4 & 1/4 \\ X_2 = 1 & 1/4 & 1/4 \end{array}
$$

- Same for X_1 and X_3 , and for X_2 and X_3 .
- Are X_1, X_2 and X_3 independent?
- \bullet No:

$$
1/4 = \Pr(X_1 = 1, X_2 = 1, X_3 = 1) \ne
$$

$$
\Pr(X_1 = 1) \Pr(X_2 = 1) \Pr(X_3 = 1) = 1/8.
$$

• The same warning applies for independent events: $\{X_i =$ 1} are only pairwise independent.

Convolution, or the pmf of $X + Y$

- Suppose X and Y are independent random variables whose range is included in $\{0, 1, \ldots, n\}$.
- Then for $k \in \{0, 1, ..., 2n\},\$ $\{X + Y = k\} = \bigcup_{j=0}^{k} (\{X = j\} \cap \{Y = k - j\}).$
- Note that many of the events might be empty.
- This is a disjoint union so

$$
\Pr(X + Y = k) = \sum_{j=0}^{k} \Pr(X = j, Y = k - j)
$$

$$
= \sum_{j=0}^{k} \Pr(X = j) \Pr(Y = k - j).
$$

• In other words,

$$
f_{X+Y}(k) = \sum_{j=0}^{k} f_X(j) f_Y(k-j).
$$

• The right hand side is called the *convolution* of f_X and f_Y and is denoted by $f_X * f_Y$.

Example: sum of binomials

Suppose X has distribution $B_{n,p}$, Y has distribution $B_{m,p}$, and X and Y are independent.

$$
\Pr(X + Y = k) = \sum_{j=0}^{k} \Pr(X = j) \Pr(Y = k - j)
$$

=
$$
\sum_{j=0}^{k} {n \choose j} p^{j} (1-p)^{n-j} {m \choose k-j} p^{k-j} (1-p)^{m-k+j}
$$

=
$$
\sum_{j=0}^{k} {n \choose j} {m \choose k-j} p^{k} (1-p)^{n+m-k}
$$

=
$$
p^{k} (1-p)^{n+m-k} \sum_{j=0}^{k} {n \choose j} {m \choose k-j}
$$

=
$$
{n+m \choose k} p^{k} (1-p)^{n+m-k}
$$

Thus, $X + Y$ has distribution $B_{n+m,p}$.

An easier argument:

- Perform $n + m$ Bernoulli trials.
- Let X be the number of successes in the first n .
- Let Y be the number of successes in the last m .
- On the one hand, $X + Y$ is the number of successes in all $n + m$ trials, and so has distribution $B_{n+m,p}$.
- On the other hand,
	- \cdot X has distribution $B_{n,p}$
	- \cdot Y has distribution $B_{m,p}$
	- \cdot X and Y are independent (why?)
	- \cdot So $X + Y$ has the distribution we are looking for.

Expectation, or expected value

- Suppose we toss a biased coin, with $Pr(H) = 2/3$.
	- · If the coin lands heads, you get \$1.
	- · If the coin lands tails, you get \$3.
- What are your expected winnings?
	- · 2/3 of the time you get \$1.
	- · 1/3 of the time you get \$3
	- \cdot (2/3 \times 1) + (1/3 \times 3) = 5/3
- Formally, we have a random variable W (for winnings): $W(H) = 1, W(T) = 3.$
- The expectation of W is

$$
E(W) = Pr(H)W(H) + Pr(T)W(T)
$$

= Pr(W = 1) × 1 + Pr(W = 3) × 3

• Def. The *expectation* of random variable X is

$$
E(X) = \sum_{x} x f_X(x).
$$

- In other words, expectation is a weighted average.
- Technically we require that $\sum_{x} |x| f_X(x) < \infty$

Examples

- What is the expected count when two dice are tossed?
	- \cdot Let X be the count.

·

$$
E(X) = \sum_{i=2}^{12} i f_X(i)
$$

= $2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + \dots + 7\frac{6}{36} + \dots + 12\frac{1}{36}$
= $\frac{252}{36}$
= 7.

• Let X be the indicator function of a success in one Bernoulli trial: $X =$ 1 success 0 failure .

$$
E(X) = 0 \cdot (1 - p) + 1 \cdot p = p.
$$

- Note that if $p \in (0,1)$ X cannot attain its expected value.
- Since $E(X) = \sum_{x} x f_X(x)$ is defined in terms of the pmf of X one can talk about the expectation of a distribution.

Expectation of Binomials

- What is $E(B_{n,p})$, the expectation of the binomial distribution $B_{n,p}$?
- \bullet How many heads do you expect to get after n tosses of a biased coin with $Pr(H) = p$?

$$
E(B_{n,p}) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}.
$$

• Note that $\frac{1}{2}$

$$
k\binom{n}{k} = k \frac{n!}{k!(n-k)!}
$$

= $n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = n \binom{n-1}{k-1}$

 \bullet So

$$
E(B_{n,p}) = \sum_{k=1}^{n} n {n-1 \choose k-1} p \cdot p^{k-1} (1-p)^{(n-1)-(k-1)}
$$

=
$$
np \sum_{j=0}^{n-1} {n-1 \choose j} p^j (1-p)^{(n-1)-j}
$$

=
$$
np[p + (1-p)]^{n-1}
$$

=
$$
np.
$$

Expectation of Poisson distribution

Let X be Poisson with rate λ : $f_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}, k \in \mathbb{N}$.

$$
E(X) = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}
$$

= $\lambda \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}$
= $\lambda \sum_{j=0}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!}$
= λ .

- Does this make sense?
- Recall that, for example, X models the number of incoming calls for a tech support center whose average rate per minute is λ .

Expectation of geometric distribution

- \bullet We observe a sequence of Bernoulli trials (0 < p < 1).
- Let X denote the number of the first succssful trial.
- X has a *geometric* distribution.

$$
f_X(k) = (1 - p)^{k-1}p
$$
 $k \in \mathbb{N}^+$.

• What is the probability that X is finite?

$$
\sum_{k=1}^{\infty} f_X(k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p
$$

$$
= p \sum_{j=0}^{\infty} (1-p)^j
$$

$$
= p \frac{1}{1 - (1-p)} = 1.
$$

• What is $E(X)$? With $q = 1 - p$

$$
E(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} p = p \sum_{k=0}^{\infty} \frac{d}{dq} q^k
$$

= $p \cdot \frac{d}{dq} \left(\sum_{k=0}^{\infty} q^k \right) = p \cdot \frac{d}{dq} \left(\frac{1}{1-q} \right)$
= $p \cdot \frac{1}{(1-q)^2} = p \cdot \frac{1}{p^2} = \frac{1}{p}.$

The Expectation of $X + Y$

- Claim. $E(X) = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega)$.
- Proof. Note that

$$
f_X(x) = \Pr(\{\omega \in \Omega : X(\omega) = x\})
$$

$$
= \sum_{\{\omega \in \Omega : X(\omega) = x\}} \Pr(\omega).
$$

$$
\sum_{\omega \in \Omega} X(\omega) \Pr(\omega) = \sum_{x} \sum_{\{\omega \in \Omega : X(\omega) = x\}} X(\omega) \Pr(\omega)
$$

$$
= \sum_{x} \sum_{\{\omega \in \Omega : X(\omega) = x\}} x \Pr(\omega)
$$

$$
= \sum_{x} x f_X(x).
$$

- Theorem. $E(X + Y) = E(X) + E(Y)$
- Proof.

$$
E(X + Y) = \sum_{\omega \in \Omega} (X + Y)(\omega) \Pr(\omega)
$$

=
$$
\sum_{\omega \in \Omega} [X(\omega) + Y(\omega)] \Pr(\omega)
$$

=
$$
\sum_{\omega \in \Omega} X(\omega) \Pr(\omega) + \sum_{\omega \in \Omega} Y(\omega) \Pr(\omega)
$$

Examples

- Back to the expected value of tossing two dice:
	- \cdot Let X be the count on the first die, Y the count on the second die.

$$
E(X) = E(Y) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5
$$

• So

$$
E(X + Y) = E(X) + E(Y) = 3.5 + 3.5 = 7
$$

- Back to the expected value of $B_{n,p}$.
	- \cdot Consider a sequence of n Bernoulli trials.
	- \cdot Let X_k be the indicator function of success in the kth trial.
	- We already know $E(X_k) = p$.
	- \cdot X = $\sum_{n=1}^{\infty}$ $_{k=1}^{n} X_{k}$ is distributed $B_{n,p}$.
	- · Therefore

$$
E(X) = E\left(\sum_{k=1}^{n} X_k\right) = \sum_{k=1}^{n} E(X_k) = np.
$$

The middle equality can be derived by induction.