Combinatorics

Problem: How to count without counting.

e How do you figure out how many things there are with
a certain property without actually enumerating all of
them.

Sometimes this requires a lot of cleverness and deep math-
ematical insights.

But there are some standard techniques.

e That’s what we’ll be studying.



Sum and Product Rules

Example 1: In New Hampshire, license plates consisted
of two letters followed by 3 digits. How many possible
license plates are there?

Answer: 26 choices for the first letter, 26 for the second,
10 choices for the first number, the second number, and
the third number:

26% x 10° = 676, 000
Example 2: A traveling salesman wants to do a tour of
all 50 state capitals. How many ways can he do this?

Answer: 50 choices for the first place to visit, 49 for the
second, ...: 50! altogether.

Chapter 4 gives general techniques for solving counting
problems like this. Two of the most important are:



The Sum Rule: If there are n(A) ways to do A and,
distinct from them, n(B) ways to do B, then the number
of ways to do A or Bis n(A) + n(B).

e This rule generalizes: there are n(A) + n(B) + n(C)
ways to do A or B or C

e In Section 4.8, we'll see what happens if the ways of
doing A and B aren’t distinct.

The Product Rule: If there are n(A) ways to do A
and n(B) ways to do B, then the number of ways to do
A and B is n(A) x n(B). This is true if the number of
ways of doing A and B are independent; the number of
choices for doing B is the same regardless of which choice
you made for A.

e Again, this generalizes. There are n(A)xn(B)xn(C)
ways to do A and B and C



Some Subtler Examples

Example 3: If there are n Senators on a committee, in
how many ways can a subcommittee be formed?

Two approaches:

1. Let Ny be the number of subcommittees with 1 sen-
ator (n), Ny the number of subcommittees with 2
senator (n(n —1)/2), ...

According to the sum rule:

N=N+Ny+---+ N,

e [t turns out that N = ﬁlk), (n choose k); this
is discussed in Section 4.4

e A subtlety: What about Ny? Do we allow sub-
committees of size 07 How about size n?

o The problem is somewhat ambiguous.

If we allow subcommittees of size 0 and n, then
there are 2" subcommittees altogether.

o This i1s the same as the number of subsets of the
set of n Senators: there is a 1-1 correspondence
between subsets and subcommittees.

2. Simpler method: Use the product rule!
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e [lach senator is either in the subcommittee or out
of it: 2 possibilities for each senator:

02X 2xX---x2=2"choices altogether

General moral: In many combinatorial problems, there’s
more than one way to analyze the problem.



How many ways can the full committee be split into two
sides on an issue?

This question is also ambiguous.

e If we care about which way each Senator voted, then
the answer is again 2"": Each subcommittee defines
a split + vote (those in the subcommittee vote Yes,
those out vote No); and each split + vote defines de-
fines a subcommittee.

e If we don’t care about which way each Senator voted,
the answer is 2" /2 = 2"~ 1

o This 1s an instance of the Division Rule.



Coping with Ambiguity

If you think a problem is ambiguous:
1. Explain why
2. Choose one way of resolving the ambiguity
3. Solve the problem according to your interpretation

e Make sure that your interpretation doesn’t render
the problem totally trivial



More Examples

Example 4: How many legal configurations are there
in Towers of Hanoi with n rings?

Answer: The product rule again: Each ring gets to
“vote” for which pole it’s on.

e Once you've decided which rings are on each pole,
their order is determined.

e The total number of configurations is 3"

Example 5: How many distinguishable ways can the
letters of “computer” be arranged? How about “dis-
crete”

For computer, it's 8!:

e 8 choices for the first letter, for the second, ...

[s it 8! for discrete? Not quite.
e There are two €’s
Suppose we called them ey, es:

e There are two “versions’” of each arrangement, de-
pending on which e comes first: discrejtes is the same
as discreste;.

e Thus, the right answer is 8! /2!
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Division Rule: If there is a k-to-1 correspondence be-
tween of objects of type A with objects of type B, and
there are n(A) objects of type A, then there are n(A)/k

objects of type B.

A k-to-1 correspondence is an onto mapping in which
every B object is the image of exactly k A objects.



Permutations

A permutation of n things taken r at a time, written
P(n,r), is an arrangement in a row of r things, taken
from a set of n distinct things. Order matters.

Example 6: How many permutations are there of 5
things taken 3 at a time?

Answer: 5 choices for the first thing, 4 for the second,
3 for the third: 5 x 4 x 3 = 60.

e If the 5 things are a, b, ¢, d, e, some possible permuta-

tions are:
abc abd abe acb acd ace
adb adc ade aeb aec aed
In general
n!
Pnr)=———=nn—-1)---(n—r+1)

(n —7)!
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Combinations

A combination of n things taken r at a time, written
C(n,r) or (") (“n choose r”) is any subset of r things
from n things. Order makes no difference.

Example 7: How many ways are there of choosing 3
things from 57

Answer: If order mattered, then it would be 5 x 4 x 3.
Since order doesn’t matter,

abc, acb, bac, bca, cab, cba

are all the same.

e For way of choosing three elements, there are 3! = 6
ways of ordering them.

Therefore, the right answer is (5 x 4 x 3)/3! = 10:
abc abd abe acd ace

ade bed bee bde cde

In general

n!

C(n,r) = =nn—1)---(n—r+1)/r!

(n—nr)lr!
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More Examples

Example 8: How many full houses are there in poker?

e A full house has 5 cards, 3 of one kind and 2 of an-
other.

o lg: 35 sand 2 K’s.

Answer: You need to find a systematic way of counting:

e Choose the denomination for which you have three of
a kind: 13 choices.

e Choose the three: C(4,3) = 4 choices

e Choose the denomination for which you have two of
a kind: 12 choices

e Choose the two: C'(4,2) = 6 choices.
Altogether, there are:

13 x4 x 12 x 6 = 3744 choices
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0!

[t’s useful to define 0! = 1.
Why?
1. Then we can inductively define
(n+1)!=(n+1)nl,

and this definition works even taking 0 as the base
case instead of 1.

2. A better reason: Things work out right for P(n,0)
and C'(n,0)!

How many permutations of n things from n are there?

n! n!

= =nl
(n—mn)! 0 "

P(n,n) =

How many ways are there of choosing n out of n?
0 out of n?

n!

n

- — 1
n n!0!
n n!

- — 1
0 Oln!
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More Questions

Q: How many ways are there of choosing k things from
{1,...,n} if 1 and 2 can’t both be chosen? (Suppose
n,k>2.)

A First find all the ways of choosing k£ things from n—
C'(n, k). Then subtract the number of those ways in
which both 1 and 2 are chosen:

e This amounts to choosing k—2 things from {3, ..., n}:
C(n—2,k—2).

Thus, the answer is

C(n,k)—C(n—2,k—2)

Q: What if order matters?

A: Have to compute how many ways there are of picking
k things, two of which are 1 and 2.

P(n, k) — k(k — )P(n — 2,k — 2)
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Q: How many ways are there to distribute four distinct
balls evenly between two distinct boxes (two balls go in
each box)?

A: All you need to decide is which balls go in the first
box.

C'(4,2) =6
Q: What if the boxes are indistinguishable?
A: C(4,2)/2 =3.
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Combinatorial Identities

There all lots of identities that you can form using C'(n, k).
They seem mysterious at first, but there’s usually a good
reason for them.

Theorem 1: If 0 < k < n, then
C(n,k)=C(n,n— k).

Proof:
n! n!

Gk = =~ =Rk~ k)

Q: Why should choosing k things out of n be the same
as choosing n — k things out of n?

A: There’s a 1-1 correspondence. For every way of choos-
ing k things out of n, look at the things not chosen: that’s
a way of choosing n — k things out of n.

This is a better way of thinking about Theorem 1 than
the combinatorial proof.
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Theorem 2: If 0 < k < n then
n| (n—1 N n—1
k] |k k—1
Proof 1: (Combinatorial) Suppose we want to choose k

objects out of {1,...,n}. Either we choose the last one
(n) or we don't.

1. How many ways are there of choosing k without choos-
ing the last one? C(n — 1, k).

2. How many ways are there of choosing k including n”
This means choosing k — 1 out of {1,...,n — 1}:

Cn—1,k—1).

Proof 2: Algebraic . ..

Note: If we define C'(n,k) = 0 for £ > n and k < 0,
Theorems 1 and 2 still hold.
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Pascal’s Triangle

Starting with n = 0, the nth row has n + 1 elements:

C(n,0),...,C(n,n)

Note how Pascal’s Triangle illustrates Theorems 1 and 2.
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Theorem 3: For all n > 0:

n
— on
J

Proof 1: (Z) tells you all the way of choosing a subset
of size k from a set of size n. This means that the LHS
is all the ways of choosing a subset from a set of size n.
The product rule says that this is 2".

n

2
k=0

Proof 2: By induction. Let P(n) be the statement of
the theorem.

Basis: X)_y(}) = (J) = 1 =2° Thus P(0) is true.

Inductive step: How do we express >}_,C'(n, k) in terms
of n — 1, so that we can apply the inductive hypothesis?

e Use Theorem 2!
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