Questions/Complaints About
Homework?

Here’s the procedure for homework questions/complaints:
1. Read the solutions first.

2. Talk to the person who graded it (check initials)
3. If (1) and (2) don’t work, talk to me.

Further comments:

e There’s no statute of limitations on grade changes

o although asking questions right away is a good
strategy

e Remember that 10/12 homeworks count. Each one
is roughly worth 50 points, and homework is 35% of
your final grade.

o 16 homework points = 1% on your final grade

e Remember we're grading about 80 homeworks and
oraders are not expected to be mind readers. It's
your problem to write clearly:.

e Don’t forget to staple your homework pages together,
add the cover sheet, and put your name on clearly.

o I'll deduct 2 points if that’s not the case
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Strong Induction

Sometimes when you're proving P(n + 1), you want to
be able to use P(j) for j < n, not just P(n). You can
do this with strong induction.

1. Let P(n) be the statement . . . [some statement involv-
ing n|

2. The basis step

e P(k) holds because ... |where k is the base case,
usually 0 or 1]

3. Inductive step

e Assume P(k),..., P(n) holds. We show P(n+1)
holds as follows . ..

Although strong induction looks stronger than induction,
it’s not. Anything you can do with strong induction,
you can also do with regular induction, by appropriately
modifying the induction hypothesis.

o If P(n) is the statement you're trying to prove by
strong induction, let P’(n) be the statement P(1), ..., P(n)
hold. Proving P’(n) by regular induction is the same
as proving P(n) by strong induction.



An example using strong induction

Theorem: Any item costing n > 7 kopecks can be
bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P(n) be the state-
ment that n kopecks can be paid using 3-kopeck and 5-
kopeck coins, for n > 8.

Basis: P(8) is clearly true since 8 = 3 4 5.

Inductive step: Assume P(8),...,P(n) is true. We
want to show that P(n+1). lf n 4+ 11is 9 or 10, then it’s
easy to see that there’s no problem (P(9) is true since
9 = 3+ 3+ 3, and P(10) is true since 10 = 5 + 5).
Otherwise, note that (n +1) —3 = n — 2 > 8. Thus,
P(n — 2) is true, using the induction hypothesis. This
means we can use 3- and 5-kopeck coins to pay for some-
thing costing n—2 kopecks. One more 3-kopeck coin pays
for something costing n + 1 kopecks.



Binary Search

Theorem: Binary search takes at most |logy(n)] + 1
loop iterations on a list of n items.

Proof: Let P(n) be the statement that if L — F' =n >
0, then we go through the loop at most
[logo(L +1— F)| + 1 times.

Basis: It L — F = 0, then we go through the loop at
most once (0 times if the w = w; is actually on the list),
and logy(1) + 1 = 1.

Inductive step: Assume P(0),...,P(n). If L — F =
n + 1, then either w = wyrir)/2) (in which case we
quit), or (a) W < W|(p41)/2] O (b) W > W|(FyL)/2] Let
L', F" be values of L and F on the next iteration.

Incase (a), L' = [(F+L)/2] =1, F' = F, s0
L'+1—-F =[(F+L)2 —F=|(L—-F)/2]

Incase (b) F'=|[(F+L)/2]+1, L' =L, so
L'+1-F =L—-|(F+L)/2]=|(L—-F)/2]



Either way, by strong induction, it takes at most
1+ [logy([(L — F)/2])] +1

times through the loop. (One more than it takes starting
at (L', F").)
A fact about the floor function:

ol +|z|]=|1+x|forallzeR
A fact about logs:

o 1 +logy(z/2) =1+ logy(z) — logy(2) = logy()

Therefore:

L+ [logy([(L — F)/2])] +1
1+ |logo((L+1—F)/2)] +1
|1+ logo(L+1—F)/2)] +1
[logo(L+1—F))| +1

This is what we wanted to prove!
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Bubble Sort

Suppose we wanted to sort n items. Here's one way to
do it:

Input n [number of items to be sorted]
wy, . .., Wy, [items]

Algorithm BubbleSort
fori=1ton—1
for j=1ton—1
if w; > w;; then switch(w;, w;;1) endif
endfor
endfor

Why is this right:

e Intuitively, because highest elements “bubble up” to
the top

How many comparisons?

e Best case, worst case, average case all the same:

on—1)+n—-2)+---+1=n(n—1)/2



Proving Bubble Sort Correct

We want to show that the algorithm is correct by induc-
tion. What'’s the statement of the induction?

P(k) is the statement that after k iterations of the outer
loop, wy,_p41,...,w, are the k highest items, sorted in
the right order.

Basis: How do we prove P(1)? By a nested induction!

This time, take Q (1) to be the statement that after [ iter-
ations of the inner loop, w1 is higher than {wy, ..., w;}.

Basis: (1) holds because after the first iteration of the
inner loop, wy > wy (thanks to the switch statement).

Inductive step: After [ iterations, the algorithm guar-
antees that w; 1 > w;. Using the induction hypothesis,
w1 is also higher than {wy, ..., w;_1}.

Q(n — 1) implies P(1), so we're done with the base case
of the main induction.

[Note: For areally careful proof, we need better notation
(for value of w; before and after the switch).]

Inductive step (for main induction): Assume P(k). By
the subinduction, after n — & — 1 iterations of the in-
ner loop, wy,—y, is alphabetically after {wy, ..., wy_1)}-
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Combined with P(k), this tells us w,,_y, ..., w, are the
k + 1 highest elements. This proves P(k + 1).



How to Guess What to Prove

Sometimes formulating P(n) is straightforward; some-
times it’s not. This is what to do:

e Compute the result in some specific cases
e Conjecture a generalization based on these cases

e Prove the correctness of your conjecture (by induc-
tion)



Example

Suppose a1 = 1 and a,, = af,/2) + a2 for n > 1. Find
an explicit formula for a,,.

Try to see the pattern:

ea; =1

ey =a1+a=1+1=2
ea3=ayt+a =24+1=3
ey =ayt+a,=2+2=4

Suppose we modify the example. Now a; = 3 and a,, =
afy/2] + @pns2) for n > 1. What’s the pattern?

®ea; =3

eay=a;+a;=3+3=0
ea3=ay+a;=06+3=9
e, =ay+a=0+06=12

a, = 3n!
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Theorem: If a; = k and a, = af, /21 + a2 for n > 1,
then a,, = kn for n > 1.

Proof: By strong induction. Let P(n) be the statement
that a,, = kn.

Basis: P(1) says that a; = k, which is true by hypothe-
SIS.

Inductive step: Assume P(1),..., P(n); prove P(n+1).

[(n +1>/2w T Q| (nt1)/2)
[(n+1)/2] + k| (n + 1)/2][Induction hypothesis]
(

[(n+1)/2] + [(n+1)/2])
= k(n+1)

We used the fact that [n/2] + [n/2] = n for all n (in
particular, for n 4+ 1). To see this, consider two cases: n
is odd and n is even.

o if niseven, [n/2] + |n/2| =n/24+n/2=n

Ap+1 =

a
k
k

e if n is odd, suppose n = 2k + 1
o[n/2]+ |n/2|=(k+1)+k=2k+1=n
This proof has a (small) gap:
e We should check that [(n+1)/2] <n
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In general, there is no rule for guessing the right inductive
hypothesis. However, if you have a sequence of numbers

Ty, T2, T3, ...

and want to guess a general expression, here are some
guidelines for trying to find the type of the expression
(exponential, polynomial):

e Compute lim, 0 701/7n

o if it looks like lim, o0 7 1/7n = b ¢ {0, 1}, then
r, probably has the form Ab" + - - -.

o You can compute A by computing lim,, . 7,,/b"

o Try to compute the form of - - - by considering the
sequence 1, — Ab"; that is,

Tl—Ab,Tg—AbQ,Tg—Abg,...

o lim, .o 7po1/7n = 1, then 7, is most likely a polyno-
mial.

o lim, .oo7pr1/rm = 0, then r, may have the form
A/b/™ where f(n)/n — oo

o f(n) could be nlogn or n? for example

Once you have guessed the form of r,, prove that your
guess is right by induction.
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More examples

Come up with a simple formula for the sequence
1,5,13,41,121, 365, 1093, 3281, 9841, 29525

Compute limit of 7,1 /7,

5/1 =05, 13/5~2.6, 41/13~ 3.2, 121/41 ~ 2.95,
.,29525/9841 ~ 3.000

Guess: limit is 3 (= r, = A3" + )
Compute limit of r,/3":
1/3 ~ 33, 5/9~ 56, 13/27~ 5,41/81 ~ 5,
;29525 /310 .5000
Guess: limit is 1/2 (= r,, = 13" 4 -+ )+
Compute 1, — 3" /2:

(1 —3/2),(5— 9/2) (13 — 27/2), (41 — 81/2), . ..

111
’20 202

l\D

Guess: general term is 3" /2 + (—1)"/2

Verity (by induction ...)

13



One more example

Find a formula for
1 1 1 1

I I R T/ RN s T Sy

Some values:
o =1/4
ery=1/4+1/28=8/28=2/7

ory = 1/4+1/28 + 1/70 = (70 + 10 + 4)/280 =
84/280 = 3/10

Conjecture: r, = n/(3n + 1). Let this be P(n).
Basis: P(1) says that r; = 1/4.

Inductive step:

_ 1
Tntl = Tn T BuiD)@nid)
1

_ n +

 3n+1 0 (3n+1)(3n+4)
n(3n+4)+1
(3n+1)(3n+4)

_ _3n+4n+1
 (3n+1)(3n+4)

_ (n+1)(3n+1)

— (3n+1)(3n+4)

_ n+l

~ 3n+4
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Faulty Inductions

Part of why I want you to write out your assumptions
carefully is so that you don’t get led into some standard
eITorS.

Theorem: All women are blondes.

Proof by induction: Let P(n) be the statement: For
any set of n women, if at least one of them is a blonde,
then all of them are.

Basis: Clearly OK.
Inductive step: Assume P(n). Let’s prove P(n + 1).

Given a set W of n + 1 women, one of which is blonde.
Let A and B be two subsets of W, each of which contains
the known blonde, whose union is W.

By the induction hypothesis, each of A and B consists
of all blondes. Thus, so does W. This proves P(n) =
Pn+1).
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Take W to be the set of women in the world, and let
n = |W|. Since there is clearly at least one blonde in the
world, it follows that all women are blonde!

Where’s the bug?
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Theorem: Every integer > 1 has a unique prime fac-
torization.

[The result is true, but the following proof is not:|

Proof: By strong induction. Let P(n) be the statement
that n has a unique factorization, for n > 1.

Basis: P(2) is clearly true.

Induction step: Assume P(2), ..., P(n). We prove P(n+
1). If n+1 is prime, we are done. If not, it factors some-

how. Suppose n +1 = rs r,s > 1. By the induction

hypothesis, r has a unique factorization II;p; and s has

a unique prime factorization Il;q;. Thus, I;p;ll;q; is a

prime factorization of n+ 1, and since none of the factors

of either piece can be changed, it must be unique.

What'’s the flaw??
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Problem: Suppose n + 1 = 36. That is, you've proved
that every number up to 36 has a unique factorization.
Now you need to prove it for 36.

36 isn't prime, but 36 = 3 x 12. By the induction hy-
pothesis, 12 has a unique prime factorization, say p;paps.
Thus, 36 = 3p1paps.

However, 36 is also 4 x 9. By the induction hypothesis,
4 = q1q0 and 9 = ryry. Thus, 36 = q1qor179.

How do you know that 3pipops = q1qori7s.
(They do, but it doesn’t follow from the induction hy-
pothesis. )

This is a breakdown error. If you're trying to show some-
thing is unique, and you break it down (as we broke down
n~+1 into r and s) you have to argue that nothing changes
if we break it down a different way. What if n +1 = tu?

e The actual proof of this result is quite subtle
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Theorem: The sum of the internal angles of a regular
n-gon is 180(n — 2) for n > 3.

Proof: By induction. Let P(n) be the statement of
the theorem. For n = 3, the result was shown in high
school. Assume P(n); let’s prove P(n + 1). Given a
regular (n + 1)-gon, we can lop off one of the corners:

By induction, the sum of the internal angles of the n-gon
is 180(n — 2) degrees; the sum of the internal angles of
the triangle is 180 degrees. Thus, the internal angles of
the original (n 4 1)-gon is 180(n — 1).

What’s wrong??

e When you lop off a corner, you don’t get a reqular
n-gon.

The fix: Strengthen the induction hypothesis.

e Let P(n) say that the sum of the internal angles of
any n-gon is 180(n — 2).
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Consider 0-1 sequences in which 1’s may not appear con-
secutively, except in the rightmost two positions.

e 010110 is not allowed, but 010011 is

Prove that there are 2" allowed sequences of length n for
n>1

Why can’t this be right?
“Proof” Let P(n) be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1—and
they're both allowed.

Inductive step: Assume P(n). Let’s prove P(n + 1).
Take any allowed sequence x of length n. We get a se-
quence of length n + 1 by appending either a 0 or 1 at
the end. In either case, it’s allowed.

o If x ends with a 1, it’s OK, because z1 is allowed to
end with 2 1’s.

Thus, 8,41 = 25, = 22" = 2"+,
Where’s the flaw?
e What if x already ends with 2 1’s?

Correct expression involves separating out sequences which
end in 0 and 1 (it’s done in Chapter 5, but I'm not sure
we'll get to it)
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Inductive Definitions

Example: Define s}'_; a; inductively (i.e., by induction

on n):
° Z1 _
k=1 Gk = a1
n+1 _
() ZkZl Al = 2221 ayj. + Api1

The inductive definition avoids the use of
less ambiguous.

Example: An inductive definition of n!:

o1l =1
e (n+1)=(n+1)n!
Could even start with 0! = 1.

21
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Inductive Definitions of Sets

A palindrome is an expression that reads the same back-
wards and forwards:

e Madam I'm Adam
e Able was I ere I saw Elba

What is the set of palindromes over {a,b,c,d}? Two
approaches:

1. The smallest set P such that
(a) P contains a, b, ¢, d, aa, bb, cc, dd

(b) if x is in P, then so is azxa, bxb, cxc, and dxd
2. Define P, the palindromes of length n, inductively:

e P, ={a,b,c,d}
e P, ={aa,bb, cc,dd}
e P,.1 ={axa,bzxb, crc,dxdlx € P, 1}, n > 2

Let P' = U,P,.
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Theorem: P = P’. (The two approaches define the

same set.)
Proof: Show P C P’ and P' C P.

To see that P C P’, it suffices to show that
(a) P' contains a, b, ¢, d, aa, bb, cc, dd
(b) if z is in P’, then so is aza, bxb, cxc, and dxd

(since P is the least set with these properties).

Clearly P, U P, satisfies (1), so P’ does. And if z € P,
then x € P, for some n, in which case axa, bxb, cxc, and

dxd are all in P,,o and hence in P’. Thus, P C P’.

To see that P C P, we prove by strong induction that
P, C P for all n. Let P(n) be the statement that P, C
P.

Basis: Py, P, C P: Obvious.

Suppose Py, ..., P, C P. It n > 2, the fact that P, C
P follows immediately from (b). (Actually, all we need is
the fact that P,y C P, which follows from the (strong)
induction hypothesis.)

Thus, P/ = U,P, C P.
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Recall that the set of palindromes is the smallest set P
such that

(a) P contains a, b, ¢, d, aa, bb, cc, dd
(b) if z is in P, then so is axa, bxb, cxc, and dxd
“Smallest” is not in terms of cardinality.

e P is guaranteed to be infinite

“Smallest” is in terms of the subset relation.

Here’s a set that satisfies (a) and (b) and isn’t the small-

est:
Define (),, inductively:

e )1 ={a,b,c d}

e ()o = {aa,bb, cc,dd,ab}

e 11 = {axa,bxb, crc,dxdlx € Q,_1}, n > 2
Let Q = U, Q.

[t’s easy to see that @) satisfies (a) and (b), but it isn'’t
the smallest set to do so.
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Just a Reminder

(from your friendly sponsor)

What’s (usually) a key step in proving a property of an
algorithm:

Find a loop invariant!

e State clearly what the invariant is

e Prove that it holds (often by induction, since the in-
variant says “On the nth iteration of the loop, prop-
erty P(n) holds”)
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