Prelim

Current plan is to have the prelim on March 9 at 7:30 (the regularly scheduled time), not March 10. This means it conflicts with:

- \bullet CHEM 106
- \bullet ENGRD 202
- \bullet ILRST 210
- \bullet OR&IE 321
- \bullet OR&IE 521
- \bullet PHYS 213
- \bullet PHYS 214
- \bullet T&AM 310

If you're taking one of those courses and it is actually having a prelim, let me and/or Prof. Keich know.

Logic Concepts

The most common mathematical argument is an *impli*cation.

• If $x = 2$ then $x^2 = 4$

The implication is sometimes not as obvious:

$$
\bullet x^2 = 4 \text{ if } x = 2
$$

- $x^2 = 4$ when $x = 2$
- $x = 2$ implies $x^2 = 4$
- Suppose $x = 2$. Then $x^2 = 4$.
- whenever $x = 2, x^2 = 4$
- $x = 2$ only if $x^2 = 4$
- The condition $x = 2$ is sufficient for $x^2 = 4$
- The condition $x^2 = 4$ is necessary for $x = 2$

Note that the order of $x = 2$ and $x^2 = 4$ change.

We denote the implication "If A then B " by

$A \Rightarrow B$

YOU NEED TO LEARN TO RECOGNIZE IMPLICA-TIONS.

Implications chain:

- If $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$
- $\bullet ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$

The *converse* of $A \Rightarrow B$ is $B \Rightarrow A$.

- \bullet They are not equivalent.
- $x = 2 \Rightarrow x^2 = 4$ is true; $x^2 = 4 \Rightarrow x = 2$ is not $(x \text{ could be } -2)$

The contrapositive of $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$.

- \bullet \neg stands for negation
- \bullet A statement is *equivalent* to its contrapositive.
- If $x^2 \neq 4$ then $x \neq 2$.
- If you're asked to prove $A \Rightarrow B$, one way to do it (which is sometimes easier) is to show $\neg B \Rightarrow \neg A$

Equivalence

If both $A \Rightarrow B$ and $B \Rightarrow A$ are true, we write:

 $A \Leftrightarrow B$

A is equivalent to B (A if and only if B; A iff B)

$$
(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)
$$

 S is a square if and only if S is both a rectangle and a rhombus.

- S being a rectangle and a rhombus is sufficient for S to be a square
- S being a rectangle and a rhombus is necessary for S to be a square

Quantifiers

Quantifiers are words like every, all, some:

- \bullet Every prime other than two is odd
- \bullet $Some$ real numbers are not integers

Any is ambiguous: sometimes it means *every*, and sometimes it means some

- Anybody knows that $1+1=2$
- \bullet He'd be happy to get an A in any course

Avoid *any*: use every $(=$ all) or some.

Negation

The negation of A, written $\neg A$, is true exactly if A is false:

• The negation of $x = 2$ is $x \neq 2$

Be careful when negating quantifiers!

- What is the negation of $A =$ "Some of John's answers" are correct"
- Is it $B=$ "Some of John's answers are not correct"

 \circ No! A and B can be simultaneously true

 \bullet It's "All of John's answers are incorrect".

Algorithms

An *algorithm* is a recipe for solving a problem.

In the book, a particular language is used for describing algorithms.

- You need to learn the language well enough to read the examples
- You need to learn to express your solution to a problem algorithmically and *unambiquously*
- YOU DO NOT NEED TO LEARN IN DETAIL ALL THE IDIOSYNCRACIES OF THE PARTICULAR LANGUAGE USED IN THE BOOK.
	- o You will not be tested on it, nor will most of the questions in homework use it

Main Features of the Language

 \bullet Assignment statements

 $\circ x \leftarrow 3$

- \bullet if \ldots then \ldots else statements
	- \circ if $x = 3$ then $y \leftarrow y + 1$ else $y \leftarrow z$ endif
	- $\circ x = 3$ is a *test* or *predicate*; it evaluates to either true or false
- \bullet Selection statement

if B_1 then S_1 B_2 then S_2 $\ddot{\ddot{\cdot}}$ B_k then S_k [else S_{k+1}] endif

Iteration

Lots of variants: repeat until B S endrepeat **or** repeat S endrepeat when ${\cal B}$ **or** repeat while B S endrepeat (Same as while B do S) **or** for $C=1$ to n \overline{S}

endfor

Input and Output

Programs start with input statements of the form:

Input x, a_0, \ldots, a_k

• the values of the variables x, a_0, \ldots, a_k are assumed to be available at the beginning of the program

Programs end with output statements of the form:

Output P

Example

Input a_0, a_1, \ldots, a_n, x

$$
P \leftarrow a_n
$$

for $k = 1$ to n

$$
P \leftarrow Px + a_{n-k}
$$

Output P

What does this compute?

Procedure Calls

It is useful to extend our algorithmic language to have procedures that we can call repeatedly. For example, we may want to have a procedure for computing gcd or factorial, that we can call with different arguments. Here's the notation used in the book:

procedure Name(variable list)

procedure body (includes a **return** statement) endpro

• The **return** statement returns control to the portion of the algorithm from where the procedure was called

Example:

```
procedure Factorial(n)fact \leftarrow 1m \leftarrow nrepeat until m = 1fact \leftarrow fact \times mm \leftarrow m-1endrepeat
      return fact
endpro
```
Recursion

Recursion occurs when a procedure calls itself. Classic example: Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2, moving one ring at a time, and never having a larger ring on top of a smaller one.

How do we solve this?

- \bullet Think recursively!
- \bullet Suppose you could solve it for $n-1$ rings? How could you do it for n ?

Solution

• Move top $n-1$ rings from pole 1 to pole 3 (we can do this by assumption)

o Pretend largest ring isn't there at all

- Move largest ring from pole 1 to pole 2
- Move top $n-1$ rings from pole 3 to pole 2 (we can do this by assumption)

 \circ Again, pretend largest ring isn't there

This solution translates to a recursive algorithm:

- Suppose robot $(r \rightarrow s)$ is a command to a robot to move the top ring on pole r to pole s
- Note that if $r, s \in \{1, 2, 3\}$, then $6-r-s$ is the other number in the set

procedure $H(n,r,s)$ [Move *n* disks from *r* to *s*] **if** $n = 1$ **then** robot($r \rightarrow s$) else $H(n-1, r, 6-r-s)$ $robot(r \rightarrow s)$ $H(n-1, 6-r-s, s)$ endif return endpro

Tree of Calls

Suppose there are initially three rings on pole 1, which we want to move to pole 2:

Analysis of Algorithms

For a particular algorithm, we want to know:

- \bullet How much time it takes
- How much space it takes

What does that mean?

- In general, the time/space will depend on the input size
	- o The more items you have to sort, the longer it will take
- Therefore want the answer as a function of the input size
	- o What is the best/worst/average case as a function of the input size.

Given an algorithm to solve a problem, may want to know if you can do better.

• What is the *intrinsic complexity* of a problem?

This is what *computational complexity* is about.

Towers of Hanoi: Analysis

procedure H(*n*, *r*, *s*) [Move *n* disks from *r* to *s*]
\n**if**
$$
n = 1
$$
 then robot($r \rightarrow s$)
\n**else** $H(n - 1, r, 6 - r - s)$
\n
$$
B(n - 1, 6 - r - s, s)
$$
\n**endif**
\n**return**
\n**endpro**

Let $h_n = \#$ moves to move *n* rings from pole *r* to pole *s*.

- Clearly $h_1 = 1$
- Algorithm shows that $h_n = 2h_{n-1} + 1$

$$
\circ h_2 = 3; h_3 = 7; h_4 = 15; \dots
$$

$$
\circ h_n = 2^n - 1
$$

We'll prove this formally later, when we also show that this is optimal.

Binary Search: Analysis

Sequential search is terrible for finding a word in a dictionary. Can do much better with random access.

 \bullet it's like playing 20 questions — cut the search space in half with each question!

[number of words in list] Input n [alphabetized list] w_1, \ldots, w_n [search word] \overline{w} **Algorithm BinSearch** $F \leftarrow 1: L \leftarrow n$ [Initialize range] $i \leftarrow |(F+L)/2|$ **repeat until** $w = w_i$ or $F > L$ if $w < w_i$ then $L \leftarrow i-1$ else $F \leftarrow i+1$ endif $i \leftarrow |(F+L)/2|$ end repeat **if** $w = w_i$ then print *i* else print 'failure' endif

How many times do we go through the loop?

- \bullet Best case: 0
- Average case: too hard for us
- Worst case: $|\log_2(n)|+1$

 \circ After each loop iteration, $F - L$ is halved.

Methods of Proof

One way of proving things is by induction.

 \bullet That's coming next.

What if you can't use induction?

Typically you're trying to prove a statement like "Given" X, prove (or show that) Y . This means you have to prove

$$
X \Rightarrow Y
$$

In the proof, you're allowed to assume X , and then show that Y is true, using X.

• A special case: if there is no X , you just have to prove Y or true \Rightarrow Y.

Alternatively, you can do a *proof by contradiction*: Assume that Y is false, and show that X is false.

 \bullet This amounts to proving

$$
\neg Y \Rightarrow \neg X
$$

Example

Theorem *n* is odd iff n^2 is odd, for $n \in N^+$.

Proof: We have to show

1. n odd \Rightarrow n^2 odd

2. n^2 odd \Rightarrow n odd

For (1), if *n* is odd, it is of the form $2k + 1$. Hence,

$$
n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1
$$

Thus, n^2 is odd.

For (2), we proceed by contradiction. Suppose n^2 is odd and *n* is even. Then $n = 2k$ for some *k*, and $n^2 = 4k^2$. Thus, n^2 is even. This is a contradiction. Thus, n must be odd.

A Proof By Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: By contradiction. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = a/b$ for some $a, b \in N^+$. We can assume that a/b is in lowest terms.

• Therefore, a and b can't both be even.

Squaring both sides, we get

$$
2 = a^2/b^2
$$

Thus, $a^2 = 2b^2$, so a^2 is even. This means that a must be even.

Suppose $a = 2c$. Then $a^2 = 4c^2$.

Thus, $4c^2 = 2b^2$, so $b^2 = 2c^2$. This means that b^2 is even, and hence so is b .

Contradiction!

Thus, $\sqrt{2}$ must be irrational.

Induction

This is perhaps the most important technique we'll learn for proving things.

Idea: To prove that a statement is true for all natural numbers, show that it is true for 1 (base case or basis step) and show that if it is true for n , it is also true for $n+1$ (*inductive step*).

- The base case does not have to be 1; it could be $0, 2,$ $3, \ldots$
- If the base case is k , then you are proving the statement for all $n \geq k$.

It is sometimes quite difficult to formulate the statement to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT THE FORMULATION OF THE STATEMENT TO PROVE. YOU MUST STATE IT VERY CLEARLY. I WILL ALSO BE PICKY ABOUT THE FORM OF THE INDUC-TIVE PROOF.

Writing Up a Proof by Induction

- 1. State the hypothesis very clearly:
	- Let $P(n)$ be the statement ... [some statement involving n
- 2. The basis step
	- $P(k)$ holds because ... where k is the base case, usually 0 or 1
- 3. Inductive step
	- Assume $P(n)$. We prove $P(n+1)$ holds as follows ... Thus, $P(n) \Rightarrow P(n+1)$.
- 4. Conclusion
	- Thus, we have shown by induction that $P(n)$ holds for all $n \geq k$ (where k was what you used for your basis step). It's not necessary to always write the conclusion explicitly.

A Simple Example

Theorem: For all positive integers n ,

$$
\sum_{k=1}^n k = \frac{n(n+1)}{2}.
$$

Proof: By induction. Let $P(n)$ be the statement

$$
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.
$$

Basis: $P(1)$ asserts that $\Sigma_{k=1}^1 k = \frac{1(1+1)}{2}$. Since the LHS and RHS are both 1, this is true.

Inductive step: Assume $P(n)$. We prove $P(n + 1)$.

$$
\Sigma_{k=1}^{n+1} k = \Sigma_{k=1}^{n} k + (n+1)
$$

= $\frac{n(n+1)}{2} + (n+1)$ [Induction hypothesis]
= $\frac{n(n+1)+2(n+1)}{2}$
= $\frac{(n+1)(n+2)}{2}$

Thus, $P(n)$ implies $P(n + 1)$, so the result is true by induction.

Notes:

- \bullet You can write $\stackrel{P(n)}{=}$ instead of writing "Induction hypothesis" at the end of the line, or you can write " $P(n)$ " at the end of the line.
	- o Whatever you write, make sure it's clear when you're applying the induction hypothesis
- Notice how we rewrite $\sum_{k=1}^{n+1} k$ so as to be able to appeal to the induction hypothesis. This is standard operating procedure.

Another example

Theorem: $(1+x)^n \ge 1+nx$ for all nonnegative integers *n* and all $x \geq 0$.

Proof: By induction on *n*. Let $P(n)$ be the statement $(1+x)^n \ge 1 + nx.$

Basis: $P(0)$ says $(1+x)^0 \ge 1$. This is clearly true.

Inductive Step: Assume $P(n)$. We prove $P(n + 1)$.

$$
(1+x)^{n+1} = (1+x)^n(1+x)
$$

\n
$$
\geq (1+nx)(1+x)[\text{Induction hypothesis}]
$$

\n
$$
= 1 + nx + x + nx^2
$$

\n
$$
= 1 + (n+1)x + nx^2
$$

\n
$$
\geq 1 + (n+1)x
$$

This argument actually works for if $x \ge -1$.

• Why? Why does it fail if $x < -1$?

Towers of Hanoi

Theorem: It takes $2^n - 1$ moves to perform $H(n, r, s)$, for all positive *n*, and all $r, s \in \{1, 2, 3\}.$

Proof: Let $P(n)$ be the statement "It takes $2^{n}-1$ moves to perform $H(n, r, s)$ and all $r, s \in \{1, 2, 3\}$."

- Note that "for all positive n" is not part of $P(n)$!
- \bullet $P(n)$ is a statement about a particular n.
- If it were part of $P(n)$, what would $P(1)$ be?

Basis: $P(1)$ is immediate: robot $(r \leftarrow s)$ is the only move in $H(1, r, s)$, and $2^1 - 1 = 1$.

Inductive step: Assume $P(n)$. To perform $H(n+1, r, s)$, we first do $H(n, r, 6-r-s)$, then robot $(r \leftarrow s)$, then $H(n, 6-r-s, s)$. Altogether, this takes $2^n - 1 + 1 +$ $2^{n} - 1 = 2^{n+1} - 1$ steps.

A Matching Lower Bound

Theorem: Any algorithm to move *n* rings from pole r to pole s requires at least $2^n - 1$ steps.

Proof: By induction, taking the statement of the theorem to be $P(n)$.

Basis: Easy: Clearly it requires (at least) 1 step to move 1 ring from pole r to pole s .

Inductive step: Assume $P(n)$. Suppose you have a sequence of steps to move $n + 1$ rings from r to s. There's a first time and a last time you move ring $n + 1$:

- Let k be the first time
- Let k' be the last time.
- Possibly $k = k'$ (if you only move ring $n + 1$ once)

Suppose at step k, you move ring $n + 1$ from pole r to pole s' .

• You can't assume that $s' = s$, although this is optimal.

Key point:

- The top *n* rings have to be on the third pole, $6-r-s'$
- Otherwise, you couldn't move ring $n+1$ from r to s'.

By $P(n)$, it took at least $2^n - 1$ moves to get the top n rings to pole $6 - r - s'$.

At step k', the last time you moved ring $n + 1$, suppose you moved it from pole r' to s (it has to end up at s).

- the other *n* rings must be on pole $6 r' s$.
- By $P(n)$, it takes at least $2^n 1$ moves to get them to ring s (where they have to end up).

So, altogether, there are at least $2(2^{n} - 1) + 1 = 2^{n+1} - 1$ moves in your sequence:

- at least $2^n 1$ moves before step k
- at least $2^n 1$ moves after step k'
- \bullet step k itself.

If course, if $k \neq k'$ (that is, if you move ring $n + 1$ more than once) there are even more moves in your sequence.