Prelim

Current plan is to have the prelim on March 9 at 7:30 (the
regularly scheduled time), not March 10. This means it
conflicts with:

e CHEM 106
e KNGRD 202
o [LRST 210
e OR&IE 321
e OR&IE 521
e PHYS 213

e PHYS 214

o T&AM 310

If you're taking one of those courses and it is actually
having a prelim, let me and/or Prof. Keich know.



Logic Concepts

The most common mathematical argument is an impli-
cation.

o If x =2 then x* =4
The implication is sometimes not as obvious:
ot =4ifx =2
o 22 =4 when z = 2
o v = 2 implies 2 =4
e Suppose z = 2. Then 2% = 4.
e whenever x =2, 22 =4
o =2onlyif z° =4
e The condition z = 2 is sufficient for 2 = 4
e The condition z* = 4 is necessary for z = 2

Note that the order of x = 2 and 22 = 4 change.

We denote the implication “If A then B” by
A= B

YOU NEED TO LEARN TO RECOGNIZE IMPLICA-
TIONS.



Implications chain:
olf A= Band B= Cthen A= C
o (A= B)N(B=0(C))=(A=C)
The converse of A= Bis B = A.
e They are not equivalent.

o1 =2=2=4istrue; 2* =4 = x = 2 is not
(x could be —2)

The contrapositive of A = Bis - B = - A.
e — stands for negation
e A statement is equivalent to its contrapositive.
o If 2% +# 4 then z # 2.

e If you're asked to prove A = B, one way to do it
(which is sometimes easier) is to show =B = —A



Equivalence

If both A = B and B = A are true, we write:
A& B
A is equivalent to B (A if and only if B; A iff B)

(A= B) & (-B = —A)

S is a square if and only if S is both a rectangle and a
rhombus.

e S being a rectangle and a rhombus is suflicient for S
to be a square

e S being a rectangle and a rhombus is necessary for S
to be a square



Quantifiers

Quantifiers are words like every, all, some:
e [very prime other than two is odd
e Some real numbers are not integers

Any is ambiguous: sometimes it means every, and some-
times 1t means some

e Anybody knows that 1 + 1 = 2
e He'd be happy to get an A in any course

Avoid any: use every (= all) or some.



Negation

The negation of A, written —A, is true exactly if A is
false:

e The negation of x =2 is x # 2

Be careful when negating quantifiers!

e What is the negation of A = “Some of John’s answers
are correct”

e [s it B= “Some of John’s answers are not correct”
o No! A and B can be simultaneously true

o [t's “All of John’s answers are incorrect” .



Algorithms

An algorithm is a recipe for solving a problem.

In the book, a particular language is used for describing
algorithms.

e You need to learn the language well enough to read
the examples

e You need to learn to express your solution to a prob-
lem algorithmically and unambiguously

e YOU DO NOT NEED TO LEARN IN DETAIL ALL
THE IDIOSYNCRACIES OF THE PARTICULAR
LANGUAGE USED IN THE BOOK.

o You will not be tested on it, nor will most of the
questions in homework use it



Main Features of the Language

e Assignment statements
ox «— 3
o if ... then ...else statements

oif r =3 then y «— y + 1 else y +— 2z endif
ox = 318 a test or predicate; it evaluates to either
true or false

e Sclection statement

if B; then 5,
BQ then SQ

Bk then Sk
lelse Sy 1]
endif



Iteration

Lots of variants:

repeat until B
S

endrepeat
or

repeat
S

endrepeat when B
or

repeat while B
S

endrepeat

(Same as while B do 5)

or

forC =1ton
S

endfor



Input and Output

Programs start with input statements of the form:
Input z. ag, ..., a;

e the values of the variables x, ag, ..., a; are assumed
to be available at the beginning of the program

Programs end with output statements of the form:
Output P
Example
Input ag,aq,...,a,,

P« a,

for k=1ton

P— Px+a,_;

Output P

What does this compute?

10



Procedure Calls

[t is useful to extend our algorithmic language to have
procedures that we can call repeatedly. For example, we
may want to have a procedure for computing ged or fac-
torial, that we can call with different arguments. Here’s
the notation used in the book:

procedure Name(variable list)
procedure body (includes a return statement)
endpro

e The return statement returns control to the portion
of the algorithm from where the procedure was called

Example:

procedure Factorial(n)
fact — 1
m <« n
repeat until m =1
fact < fact x m
m«—m — 1
endrepeat
return fact
endpro

11



Recursion

Recursion occurs when a procedure calls itself.

Classic example: Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2,
moving one ring at a time, and never having a larger ring
on top of a smaller one.

How do we solve this?
e Think recursively!

e Suppose you could solve it for n — 1 rings? How could
you do it for n?

12



Solution
e Move top n — 1 rings from pole 1 to pole 3 (we can
do this by assumption)
o Pretend largest ring isn’t there at all

e Move largest ring from pole 1 to pole 2

e Move top n — 1 rings from pole 3 to pole 2 (we can
do this by assumption)

o Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

e Suppose robot(r — s) is a command to a robot to
move the top ring on pole r to pole s

e Note that if r, s € {1,2, 3}, then 6 —r — s is the other
number in the set

procedure H(n,r, s) [Move n disks from 7 to s
if n = 1 then robot(r — s)
else Hn—1,r,6 —r —s)
robot(r — s)
Hn—1,6—-71—s,5)
endif
return
endpro

13



Tree of Calls

Suppose there are initially three rings on pole 1, which
we want to move to pole 2:

14



Analysis of Algorithms

For a particular algorithm, we want to know:
e How much time it takes

e How much space it takes

What does that mean?

e In general, the time/space will depend on the input
size

o The more items you have to sort, the longer it will
take

e Therefore want the answer as a function of the input
size

o What is the best/worst /average case as a function
of the input size.
Given an algorithm to solve a problem, may want to know
if you can do better.
e What is the intrinsic complexity of a problem?

This is what computational complexity is about.

15



Towers of Hanoi: Analysis

procedure H(n,r,s) [Move n disks from 7 to s
if n = 1 then robot(r — s)
else Hn—1,r,6 —r —s)
robot(r — s)
Hn—1,6—r—s,s)
endif
return
endpro

Let h,, = # moves to move n rings from pole r to pole s.
e Clearly h; =1
e Algorithm shows that A,, = 2h,_1 + 1
ohy =3 h3="7 hy=15; ...
oh,=2"—1

We'll prove this formally later, when we also show that
this is optimal.

16



Binary Search: Analysis

Sequential search is terrible for finding a word in a dic-
tionary. Can do much better with random access.

e it’s like playing 20 questions — cut the search space
in half with each question!

Input n [number of words in list]
Wi, ..., Wy, lalphabetized list]
w [search word]
Algorithm BinSearch
F—1,L<n [[nitialize range

i — [(F+1)/2]

repeat until w = w; or F' > L
if w < w; then L «— ¢ —1else F' «— ¢+ 1 endif
1= [(F+L)/2]

end repeat

if w = w; then print ¢ else print ‘failure’ endif

How many times do we go through the loop?
e Best case: 0
e Average case: too hard for us
e Worst case: |logy(n)] + 1
o After each loop iteration, F' — L is halved.

17



Methods of Proof

One way of proving things is by induction.
e That’s coming next.

What it you can’t use induction?

Typically you're trying to prove a statement like “Given
X, prove (or show that) Y. This means you have to

prove
X =Y

In the proof, you're allowed to assume X, and then show
that Y is true, using X.

e A special case: if there is no X, you just have to prove
Y or true =Y.

Alternatively, you can do a proof by contradiction: As-
sume that Y is false, and show that X is false.

e This amounts to proving

Y = X

18



Example

Theorem n is odd iff n? is odd, for n € N*.
Proof: We have to show
1. n odd = n* odd
2. n% odd = n odd
For (1), if n is odd, it is of the form 2k + 1. Hence,
n® =4k + 4k + 1 = 2(2k* + 2k) + 1
Thus, n? is odd.

For (2), we proceed by contradiction. Suppose n? is odd
and n is even. Then n = 2k for some k, and n? = 4k?.

Thus, n? is even. This is a contradiction. Thus, n must
be odd.

19



A Proof By Contradiction

Theorem: +/2 is irrational.

Proof: By contradiction. Suppose v/2 is rational. Then
V2 = a/b for some a,b € N*. We can assume that a/b
is in lowest terms.

e Therefore, a and b can’t both be even.
Squaring both sides, we get
2 =a*/b?

Thus, a® = 2b°, so a® is even. This means that @ must
be even.

Suppose a = 2¢. Then a® = 4¢c.

Thus, 4¢? = 2b%, so b*> = 2¢®. This means that b° is even,
and hence so is b.

Contradiction!

Thus, v/2 must be irrational.

20



Induction

This is perhaps the most important technique we’ll learn
for proving things.

Idea: To prove that a statement is true for all natural
numbers, show that it is true for 1 (base case or basis
step) and show that if it is true for n, it is also true for
n + 1 (inductive step).

e The base case does not have to be 1: it could be 0, 2,
3, ...

e If the base case is k, then you are proving the state-
ment for all n > k.

It is sometimes quite difficult to formulate the statement
to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT
THE FORMULATION OF THE STATEMENT TO PROVE.
YOU MUST STATE IT VERY CLEARLY. I WILL ALSO
BE PICKY ABOUT THE FORM OF THE INDUC-
TIVE PROOF.

21



Writing Up a Proof by Induction

1. State the hypothesis very clearly:

e Let P(n) be the statement . .. [some statement in-
volving n|

2. The basis step

e P(k) holds because ... |where k is the base case,
usually 0 or 1]

3. Inductive step

e Assume P(n). We prove P(n+ 1) holds as follows
... Thus, P(n) = P(n+1).

4. Conclusion

e Thus, we have shown by induction that P(n) holds
for all n > k (where k was what you used for your
basis step). [It’s not necessary to always write the
conclusion explicitly.|

22



A Simple Example

Theorem: For all positive integers n,

& n(n + 1).
k=1 2

Proof: By induction. Let P(n) be the statement

k:n(nqtl).
1 2

M=

k

Basis: P(1) asserts that ©1_, k = 1(le Since the LHS
and RHS are both 1, this is true.

Inductive step: Assume P(n). We prove P(n + 1).

itk =s2 k4 (n+1)

_ @ + (n 4 1)[Induction hypothesis]
__ n(n+1)+2(n+1)

2
(n+1)(n+2)
2

Thus, P(n) implies P(n + 1), so the result is true by
induction.

23



Notes:

e You can write ‘=) instead of writing “Induction hy-

pothesis” at the end of the line, or you can write
“P(n)” at the end of the line.

o Whatever you write, make sure it’'s clear when
you're applying the induction hypothesis

e Notice how we rewrite >7{ k so as to be able to ap-

peal to the induction hypothesis. This is standard
operating procedure.

24



Another example

Theorem: (14+x)" > 1+4nx for all nonnegative integers
n and all x > 0.

Proof: By induction on n. Let P(n) be the statement
(14+2)" > 1+ nz.

Basis: P(0) says (1 + ) > 1. This is clearly true.
Inductive Step: Assume P(n). We prove P(n + 1).

(14+2)"" =1 +2)"(1 + z)
> (1 + nx)(1 + x)[Induction hypothesis]
=1+ nz +z + na’
=1+ (n+ 1)z + nz?
>1+(n+ 1)z

This argument actuallly works for if x > —1.

e Why? Why does it fail if x < —17

25



Towers of Hanoi

Theorem: It takes 2" — 1 moves to perform H(n,r, s),
for all positive n, and all 7, s € {1, 2, 3}.

Proof: Let P(n) be the statement “It takes 2" —1 moves
to perform H(n,r,s) and all r, s € {1,2,3}.”

e Note that “for all positive n” is not part of P(n)!

e P(n) is a statement about a particular n.

e If it were part of P(n), what would P(1) be?

Basis: P(1) is immediate: robot(r < s) is the only move
in H(1,r,s), and 2! — 1= 1.

Inductive step: Assume P(n). To perform H(n+1,7,s),
we first do H(n,r,6 — r — s), then robot(r <« s), then
H(n,6 —r — s,s). Altogether, this takes 2" — 1+ 1+
2" — 1 =21 1 steps.

26



A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r
to pole s requires at least 2" — 1 steps.

Proof: By induction, taking the statement of the theo-
rem to be P(n).

Basis: Easy: Clearly it requires (at least) 1 step to move
1 ring from pole r to pole s.

Inductive step: Assume P(n). Suppose you have a se-
quence of steps to move n + 1 rings from r to s. There’s
a first time and a last time you move ring n + 1:

e Let k be the first time
e Let £/ be the last time.
e Possibly £ = £’ (if you only move ring n + 1 once)

Suppose at step k, you move ring n + 1 from pole r to
pole s’

e You can’t assume that s’ = s, although this is opti-
mal.

27



Key point:
e The top n rings have to be on the third pole, 6 —r — ¢’
e Otherwise, you couldn’t move ring n + 1 from r to s’.

By P(n), it took at least 2" — 1 moves to get the top n
rings to pole 6 — r — s’

At step &/, the last time you moved ring n + 1, suppose
you moved it from pole 7’ to s (it has to end up at s).

e the other n rings must be on pole 6 — r’ — s.

e By P(n), it takes at least 2" — 1 moves to get them
to ring s (where they have to end up).

So, altogether, there are at least 2(2" — 1)+ 1 = 2" —1
moves in your sequence:

e at least 2" — 1 moves before step k
e at least 2" — 1 moves after step &’
e step k itsell.

If course, if k # k' (that is, if you move ring n + 1 more
than once) there are even more moves in your sequence.

28



