What’s It All About?

e Continuous mathematics—calculus—considers objects
that vary continuously

o distance from the wall

e Discrete mathematics considers discrete objects, that
come in discrete bundles

o number of babies: can’t have 1.2

The mathematical techniques for discrete mathematics
differ from those for continuous mathematics:

e counting/combinatorics
e number theory

e probability

e logic

We'll be studying these techniques in this course.

This Course

We will be focusing on:
e Tools for discrete mathematics:
o computational number theory (handouts)
* the mathematics behind the RSA cryptosystems
o counting/combinatorics (Chapter 4)
o probability (Chapter 6)
* randomized algorithms for factoring, routing
o logic (Chapter 7)
* how do you prove a program is correct
e Tools for proving things:
o induction (Chapter 2)

o (to a lesser extent) recursion

First, some background you’ll need but may not have ...

Why is it computer science?

This is basically a mathematics course:
® 10 programming
e lots of theorems to prove
So why is it computer science?
Discrete mathematics is the mathematics underlying al-
most all of computer science:
o Designing high-speed networks
e Finding good algorithms for sorting
e Doing good web searches
e Analysis of algorithms

e Proving algorithms correct

Sets

You need to be comfortable with set notation:

S = {m|2 < m <100, m is an integer}
S'is
the set of
all m
such that
m is between 2 and 100
and
m s an integer.



Important Sets

(More notation you need to know and love . . .)

e N (occasionally IN): the nonnegative integers {0,1,2,3, ...}

e N*: the positive integers {1,2,3, ...}

e 7: all integers {...,—3,-2,—-1,0,1,2,3,...}
e (Q: the rational numbers {a/b: a,b € Z, b+ 0}
o R: the real numbers

e 7, R*: the positive rationals/reals
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Set Operations

e Union: SUT is the set of all elements in S or T
oSUT ={zjlre SorzeT}
0 {1,2,3YU{3,4,5} = {1,2,3,4,5}
e Intersection: SNT is the set of all elements in both
Sand T
oSNT ={x|lreS,zeT}
0{1,2,3} n{3,4,5} = {3}
e Set Difference: S — T is the set of all elements in
S notin T
oS—T={zlze S z¢T}
o {3,4,5} — {1,2,3} = {4,5}
e Complementation: S is the set of elements not in
S
o What is {1,2,3}?
o Complementation doesn’t make sense unless there

is a universe, the set of elements we want to con-
sider.

o If U is the universe, S = {z|z € U,z ¢ S}
oS=U-28.

Set Notation

e |S| = cardinality of (number of elements in) S
o{a,b,c}| =3
e Subset: A C B if every element of A is an element
of B

o Note: Lots of people (including me, but not the
authors of the text) usually write A C B only if
A is a strict or proper subset of B (i.e., A # B).
[ write A C B if A= B is possible.
e Power set: P(S) is the set of all subsets of S (some-
times denoted 29).

o Eg., P({1,2,3}) =
0411, {2}, 31412}, 1,31, {2.3},{1,2,3})
o [P(S)] -2

Venn Diagrams

Sometimes a picture is worth a thousand words (at least
if we don’t have too many sets involved).



A Connection

Lemma: For all sets S and T, we have
S=lnNT)U(S—-1)

Proof: We'll show (1) S C (SNT)U (S —T) and (2)

SNTyu(S-T)c s

For (1), suppose z € S. Either
(azeTor(b)xe¢T.

If (a) holds, then z € SNT.

If (b) holds, then z € S —1T.

In either case, v € (SNT)U(S —1T).

Since this is true for all z € S, we have (1).

For (2), suppose z € (SNT)U (S —T). Thus, either (a)
ze(SNT)orxe (S—T). Either way, z € S.

Since this is true for all z € (SNT)U (S —T'), we have

(2)-

Relations

e Cartesian product:

SxT={(st):s€S,teT}

0{1,2,3} x {3,4} =
{(1,3),(2,3),(3,3), (1,4), (2,4), (3,4)}
o|SxT|=|S|x|T|

e A relation on S and T (or, on S x T') is a subset of
SxT

o A relation on S is a subset of S x S

o Taller than is a relation on people: (Joe,Sam) is
in the Taller than relation if Joe is Taller than Sam

o Larger than is a relation on R:
L=A(z.y)lz,y € R,z >y}
o Divisibility is a relation on N:

D = {(z,y)lz,y € N, |y}
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Two Important Morals

1. One way toshow S = Tistoshow S C T'and T C S.

2. One way to show S C T is to show that for every
rze€ S, risalsoin T.
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Reflexivity, Symmetry, Transitivity

e A relation R on S is reflexive if (z,z) € R for all
zefs.

o < is reflexive; < is not

e A relation R on S is symmetric if (x,y) € R implies
(y,x) € R.

o “sibling-of” is symmetric (what about “sister of”)
o < is not symmetric

o A relation R on S is transitive if (x,y) € R and
(y,2) € R implies (z, z) € R.
o <, <, >, > are all transitive;

o “parent-of” is not transitive; “ancestor-of” is

Pictorially, we have:



Transitive Closure

[[NOT DISCUSSED ENOUGH IN THE TEXT]|

The transitive closure of a relation R is the least relation
R* such that

1.RC R
2. R* is transitive (so that if (u, v), (v,w) € R*, then so
is (u, w)).
Example: Suppose R = {(1,2),(2,3),(1,4)}.
o R = {(1,2),(1,3), (2.3), (1)}
e we need to add (1, 3), because (1,2),(2,3) € R
Note that we don’t need to add (2,4).
o If (2,1), (1,4) were in R, then we’d need (2,4)

e (1,2),(1,4) doesn’t force us to add anything (it doesn’t
fit the “pattern” of transitivity.

Note that if R is already transitive, then R* = R.
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Functions

We think of a function f : S — T as providing a mapping
from S to T. But ...

Formally, a function is a relation R on S x T such that for
each s € S, there is a unique ¢ € T such that (s,t) € R.

If f: S — T, then S is the domain of f, T is the range;
{y : f(x) =y for some x € S} is the image.
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Equivalence Relations

e A relation R is an equivalence relation if it is reflex-
ive, symmetric, and transitive

o = is an equivalence relation

o Parity is an equivalence relation on N
(xz,y) € Parity if x — y is even
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We often think of a function as being characterized by an
algebraic formula

e y = 3z — 2 characterizes f(z) = 3z — 2.
It ain’t necessarily so.
e Some formulas don’t characterize functions:
o 22+ y? = 1 defines a circle; no unique y for each x

e Some functions can’t be characterized by algebraic
formulas

0 if n is even
o f(n)= 1 if nis odd
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Function Terminology

Suppose f: S — T

e [ is onto (or surjective) if, for each t € T', there is
some s € S such that f(s) =t.

oif f: Rt — R*, f(x) = 2?, then f is onto
oif f: R — R, f(x) = 2”, then f is not onto

e [ is one-to-one (1-1, injective) if it is not the case

that s #£ s and f(s) = f(s').

oif f: R" — R*, f(z) = 2? then fis 1-1
oif f: R— R, f(x) = 2? then f is not 1-1.
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Inverse Functions

If f: 8 — T, then f~! maps an element in the range of
f to all the elements that are mapped to it by f.

FHE) = {slf(s) = 3

oif f(2) =3, then 2 € f71(3).
/! is not a function from range(f) to S.

It is a function if f is one-to-one.

o In this case, f~1(f(z)) = =.
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e a function is bijective if it is 1-1 and onto.

oif f: R* — R*, f(x) = 22, then f is bijective
oif f: R— R, f(z) =2 then f is not bijective.
If f:S — T is bijective, then |S| = |T|.
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Functions You Should Know
(and Love)

e Absolute value: Domain = R; Range = {0} U Rt

r ifx>0
—x ifz <0

|z =
ol3|=1-3=3
e Floor function. Domain = R; Range = Z
|x] = largest integer not greater than z
o[32] =3 |V3] =1 |-25=-3
e (eiling function: Domain = R; Range = Z
[z] = smallest integer not less than x
0[3.2] =4; [V3] =2 [-25] = -2
e Fuactorial function: Domain = Range = N
nl=nn—-1)(n-2)..3x2x1
0bl=5x4x3x2x1=120

o By convention, 0! = 1
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Exponents

Ezponential with base a: Domain = R, Range=R*
flz) =a’
e Note: a, the base, is fixed; x varies
e You probably know: a” =a X --- X a (n times)
How do we define f(x) if x is not a positive integer?
e Want: (1) a"™ = a”a’; (2) a' = a

This means

ed’=a"'=alal=axa
ea? =a! =d’dl =axaxa
e . ..

ea" =ax...Xa(ntimes)

We get more:

0

ea=a'=a=axd

o Therefore a” =1

b+(—b) b b

el=ad"=¢ =a’"xa”

o Therefore a™ = 1/a’
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Computing a" quickly

What’s the best way to compute a'?%?
One way: multiply a X a X a X a. ..
e This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

Write 1000 in binary: 1111101000

e How many multiplications are needed to calculate a

1
o Therefore a2 = \/a

e Similar arguments show that at = Va

e a"™ = g% X -+ X a®(m times) = (a”)

m

o Thus, an = (a%)m — ({Va)m.

This determines a” for all x rational. The rest follows by
continuity.

o
2

Logarithms

Logarithm base a: Domain = R*: Range = R

y=log,(@) & a’ = a

0 10g,(8) = 3; logy(16) = 4; 3 < logy(15) < 4

The key properties of the log function follow from those
for the exponential:

1.
2.
3.

log,(1) = 0 (because a’ = 1)

1:0,)

log,(a) =1 (because a
log,(zy) = log,(z) + log,(y)

Proof: Suppose log,(z) = 21 and log,(y) = zo.
Then a® = x and a® = y.
Therefore zy = a* x a® = a2,

Thus log, (ry) = 21 + 22 = log,(z) + log,(y).

Nog, (2") = rlog,(z)
og,(1/x) = —log,(z) (because a™¥ = 1/a¥)

- logy(z) = log,(z)/ log,(b)
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Examples:
o logy(1/4) = —logy(4) = —2.
e logy(—4) undefined

[
log,(2193%)
= logy(2") +logy(3°)
101og,(2) + 51ogy(3)
10 4 5logy(3)

S
3

Polynomials

f(@) = ap+ a1z + aga® + -+ + a2’ is a polynomial
function.

® qay,...,a; are the coefficients
You need to know how to multiply polynomials:
(22° + 3x) (2% + 3z + 1)
= 22%(2® + 3x + 1) + 3x(2? + 3z + 1)

22° + 62t + 22 + 3% + 922 + 3z
225 + 62 + 52% + 922 + 3z

Exponentials grow MUCH faster than polynomials:

oag+ -+ apat
lim ———————
T—00 b‘r

=0ifb>1

Limit Properties of the Log Function

Jim log(x) = oo

TG
Tr—0oC €T

As z gets large log(z) grows without bound.

But « grows MUCH faster than log(z).

In fact, lim,_,(log(z)™)/z =0

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

e The naive algorithm takes time n?/4 on average to
sort n items

e A more sophisticated algorithm times time 2n log(n)

Which is better?

lim (2nlog(n)/(n?/4)) — lim (8 log(n)/m) — 0
For example,
e if n = 1,000,000, 2nlog(n) = 40,000,000 — this is
doable
n?/4 = 250,000,000, 000 — this is not doable

Algorithms that take exponential time are hopeless on
large datasets.
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Sum and Product Notation

k ) )
_ZO @’ = ag+ arx + apr? + - + apxt
=

P2=22432+42 452 =54

[U:;Mu

Can limit the set of values taken on by the index i:
> a; = az + a4+ ag + as
{i:2<i<8|i even}

Can have double sums:

2 3

Zé:l E{;:U oy

i1 (20 aij)

_ 3 R .

= T+ T a2j

= ay + an + ap + a3 + agy + ag + ag + ass

Product notation similar:

k.
1l ai = aoay - -~ ag
=

Matrix Algebra

An m X n matriz is a two-dimensional array of numbers,
with m rows and n columns:

air a2 -0 Qip
Qg1 Q22 - -- A2y
Al Ap2 Qg

e A 1 X n matrix [a; .. .a,] is a row vector.
e An m X 1 matrix is a column vector.
We can add two m x n matrices:
o If A =[a;] and B = [b;;] then A+ B = [a;; + b;j].

23], [37] _[510
577142799

Another important operation: transposition.

e If we transpose an m X n matrix, we get an n X m
matrix by switching the rows and columns.

T 25
=37

[239
912

57 12
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Changing the Limits of Summation

This is like changing the limits of integration.
oxitla; =y ja =ar+ -+ apn
Steps:
o Start with >+l a;.

elet j=7—1 Thus i=j5+1

e Rewrite limits in terms of j: i =1 — 7 =0; 7 =
n+l—7=n

o Rewrite body in terms of a; — a1
o Get x_aji1
e Now replace j by 7 (j is a dummy variable). Get

n
PIN AN
=0
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Matrix Multiplication

Given two vectors @ = [ay, ..., ax] and b= [b1, ..., bk,
their inner product (or dot product) is
-k
a-b= _Z] az-bz-
iz

o [1,2,3]-[~2,4,6] = (1x —2)+(2x4) +(3x 6) = 24.
We can multiply an n x m matrix A = [q;;] by an m % k
matrix B = [b;], to get an n x k matrix C' = [¢;j]:

e i = E;,nzl al-,.b,.j

e this is the inner product of the ith row of A with the
jth column of B



3 7 17 18 Why is multiplication defined in this strange way?
x| 42 [39 41} o Because it’s useful!
-1 =2
Suppose
17T=2x3)+Bx4)+(1x-1
EQ 3 1)) (< )1) ( ) 21=2y1+ 3y +ys Y1 =301+ T
18 = (2’><’7) +(3x2) +(1x-2) 2y = 5Y1 + Tys +4ys Yo = 4wy + 219
=(2,3,1)-(7,2,-2) Ys = —x1 — 229
=(Bx3)+(Tx4)+(4x—1)
=(5.7.4)-(3,4,-1) - REER RIS i Z o
=(BxT7)+(Tx2)+(4x-2) us, 57 4| Y2|80d] % o o |
=(5,7,4) - (7,2,-2) Y3 Y3 -1 -

Suppose we want to express the z’s in terms of the z’s:

21 =2y + 3y + s
= 2(31‘1 + 7$2) + 3(4I1 + Q.IQ) + <—I1 — 2$2)
=2x34+3x44+ (1)1 +2xT+3 %2+ (—2))z9

= 1721 + 18z9
Similarly, zo = 39z + 41x,.
Z1 23 3 7 X
57 12
Z9 1 -9 )

33 34



