More valid formulas involving quantifiers:
o ~VxP(x) & Jz—-P(x)
e Replacing P by =P, we get:
—Vz=P(z) & Jx——P(z)
e Therefore
—Vz-P(z) < 3zP(x)
e Similarly, we have
-3z P(z) & Vo—P(x)
—3Jz-P(z) < Ve P(x)

Theorems and Proofs

Just as in propositional logic, there are axioms and proof
rules that provide a complete axiomatization for first-
order logic, independent of the domain.

A typical axiom:
o Vi(P(x) = Q(z)) = (VaP(z) = VzQ(x)).

Suppose we restrict the domain to the natural numbers,
and allow only the standard symbols of arithmetic (+, X,
=, >, 0, 1). Typical true formulas include:

o Vady(z X y =x)
eVedylzr=y+yVer=y+y+1)
Let Prime(x) be an abbreviation for
Vyvz((z =y x 2) = ((y =1 V (y = 2)))

e Prime(z) is true if x is prime

Bound and Free Variables

Vi(i? > i) is equivalent to V5 (42 > j):

e the ¢ and j are bound variables, just like the 7, j in
i i? or i j2
=1 j=1

What about Ji(i? = 7):
e the ¢ is bound by 3i; the j is free. Its value is uncon-
strained.

e if the domain is the natural numbers, the truth of this
formula depends on the value of j.

What does the following formula say:
eVr(Iyly>1Ahe=y+y) =
Iz3z9(Prime(z1) A Prime(zo) Ax = 21 + 22))
e This is Goldbach’s conjecture: every even number
other than 2 is the sum of two primes.
o Is it true? We don’t know.
Is there a sound and complete axiomatization for arith-
metic?

e A small collection of axioms and inference rules such
that every true formula of arithmetic can be proved
from them

e Godel’s Theorem: NO!



Logic: The Big Picture

A typical logic is described in terms of
e syntax: what are the valid formulas

e semantics: under what circumstances is a formula
true

e proof theory/ aziomatization: rules for proving a
formula true

Truth and provability are quite different.

e What is provable depends on the axioms and inference
rules you use

e Provability is a mechanical, turn-the-crank process

e What is true depends on the semantics

Tautologies and Valid Arguments

When is an argument
A
Ay
A7L
B
valid?
e When the truth of the premises imply the truth of the
conclusion

How do you check if an argument is valid?

e Method 1: Take an arbitrary truth assignment v.
Show that if Ay, ..., A, are true under T (T | Ay,
...v E A,) then B is true under T

e Method 2: Show that AjA...AA, = B isatautology
(essentially the same thing)

o true for every truth assignment

e Method 3: Try to prove Ay A ... A A, = B using a
sound axiomatization

Syntax and Semantics for
Propositional Logic

e syntax: start with primitive propositions and close off
under — and A (and V, =, < if you want)

e semantics: need a truth assignment T
o formally: a function 7" that maps primitive propo-
sitions to {true, false}.
o define the truth of all formulas inductively

o logicians write T' |= A if formula A is true under
truth assignment T'

o typical inductive clauses:

TEAANBifTEAandTEB
TE-AMffTHEA

A Sound and Complete
Axiomatization for Propositional
Logic

All you need are two axioms schemes:
Axl. A= (B = A)
Ax2. (A= (B=0)= (A= B)=(A=10))
and one inference rule: Modus Ponens:
e From A = B and A infer B
Ax1 and Ax2 are axioms schemes:

e cach one encodes an infinite set of axioms (obtained
by plugging in arbitrary formulas for A, B, C'
A proof is a sequence of formulas Ay, Ag, Az, ... such
that each A; is either

1. An instance of Ax1 and Ax2
2. Follows from previous formulas by applying MP

o that is, there exist A;, A; with j, k < 4 such that
A; has the foorm A = B, Ay is A and A; is B.

This axiomatization is sound and complete.
e everything provable is a tautology

e all tautologies are provable
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First-Order Logic: Semantics

How do we decide if a first-order formula is true? Need:
e a domain D (what are you quantifying over)
e an interpretation I that interprets the constants and
predicate symbols:
o for each constant symbol ¢, I(c) € D
x Which domain element is Alice?
o for each unary predicate P, I(P) is a predicate on
domain D
* formally, I(P)(d) € {true,false} for each d € D
x [s Alice Tall? How about Bob?

o for each binary predicate @, 1(Q) is a predicate on
D x D:

 formally, I(Q)(dy,ds) € {true,false} for each
dl, dQ €D
x Is Alice taller than Bob?

e a valuation V' associating with each variable x and
element V(x) € D.

o To figure out if P(x) is true, you need to know
what x is.

Axiomatizing First-Order Logic

There’s also an elegant complete axiomatization for first-
order logic.

e Again, the only inference rule is Modus Ponens
e Typical axiom:

Va(P(z) = Q(x)) = (VxP(x) = VzQ(x))

e Completeness was proved by Godel in 1930
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Now we can define whether a formula A is true, given a
domain D, an interpretation I, and a valuation V', writ-
ten
(I,D,V)E A

The definition is by induction:
(I,D,V) | P(z) it I(P)(V(x)) = true
(I,D,V) = P(c) it I(P)(I(c))) = true
(I,D,V) EVzAif (I,D,V') | A for all valuations V'
that agree with V' except possibly on x

o V'(y)=V(y) forall y #x

e V() can be arbitrary
(I,D,V) = JzAif (I,D,V’) | A for some valuation
V' that agrees with V' except possibly on .

Some Bureuacracy

e The final is on Thursday, May 13, 12-2:30 PM, in
Philips 101

o If you have conflicts (more than two exams in a 24-
hour time period) let me know as soon as possible.

o We may schedule a makeup; or perhaps the other
course will.

e Office hours go on as usual during study week, but
check the course web site soon.

o There may be small changes to accommodate the
TAs exams

e There will be a review session

12



Coverage of Final

e everything covered by the first prelim
o emphasis on more recent material
e Chapter 4: Fundamental Counting Methods
o Basic methods: sum rule, product rule, division
rule
o Permutations and combinations

o Combinatorial identities (know Theorems 1-4 on
pp. 310-314)

o Pascal’s triangle
o Binomial Theorem (but not multinomial theorem)
o Balls and urns
o Inclusion-exclusion
o Pigeonhole principle
e Chapter 6: Probability:
0 6.1-6.5 (but not inverse binomial distribution)
o basic definitions: probability space, events
o conditional probability, independence, Bayes Thm.

o random variables

Ten Powerful Ideas

e Counting: Count without counting (combinatorics)
e Induction: Recognize it in all its guises.

¢ Exemplification: Find a sense in which you can
try out a problem or solution on small examples.

e Abstraction: Abstract away the inessential features
of a problem.

o One possible way: represent it as a graph

e Modularity: Decompose a complex problem into
simpler subproblems.

e Representation: Understand the relationships be-
tween different possible representations of the same
information or idea.

o Graphs vs. matrices vs. relations

e Refinement: The best solutions come from a pro-
cess of repeatedly refining and inventing alternative
solutions.

e Toolbox: Build up your vocabulary of abstract struc-
tures.

o uniform, binomial, and Poisson distributions

o expected value and variance

o Markov + Chebyshev inequalities

o understanding Law of Large Numbers, Central Limit
Theorem

e Chapter 7: Logic:

0 7.1-7.4, 7.6; *not* 7.5

o translating from English to propositional (or first-
order) logic

o truth tables and axiomatic proofs

o algorithm verification

o first-order logic

e Optimization: Understand which improvements are
worth it.

e Probabilistic methods: Flipping a coin can be
surprisingly helpful!
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Connections: Random Graphs

Suppose we have a random graph with n vertices. How
likely is it to be connected?
e What is a random graph?

o If it has n vertices, there are C'(n, 2) possible edges,
and 2602 possible graphs. What fraction of them
is connected?

o One way of thinking about this. Build a graph
using a random process, that puts each edge in
with probability 1/2.

e Given three vertices a, b, and ¢, what’s the probability
that there is an edge between a and b and between b
and ¢? 1/4

e What is the probability that there is no path of length
2 between a and ¢? (3/4)"2

e What is the probability that there is a path of length
2 between @ and ¢? 1 — (3/4)"2

e What is the probability that there is a path of length 2
between a and every other vertex? > (1—(3/4)"~2)"~1

Connection: First-order Logic

Suppose you wanted to query a database. How do you
do it?

Modern database query language date back to SQL (struc-
tured query language), and are all based on first-order
logic.

e The idea goes back to Ted Codd, who invented the
notion of relational databases.

Suppose you're a travel agent and want to query the air-
line database about whether there are flights from Ithaca
to Santa Fe.

e How are cities and flights between them represented?
e How do we form this query?

You're actually asking whether there is a path from Ithaca
to Santa Fe in the graph.

e This fact cannot be expressed in first-order logic!
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Now use the binomial theorem to compute (1—(3/4)"2)" 1

(1= 3742t
= 1—(n—1)(3/4)" 2+ C(n—1,2)(3/4)20 4 ...

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a
random graph will be connected.

Theorem: [Fagin, 1976] If P is any property express-
ible in first-order logic, it is either true in almost all
graphs, or false in almost all graphs.

This is called a 0-1 law.



