
More valid formulas involving quantifiers:

• ¬∀xP (x) ⇔ ∃x¬P (x)

• Replacing P by ¬P , we get:

¬∀x¬P (x) ⇔ ∃x¬¬P (x)

• Therefore
¬∀x¬P (x) ⇔ ∃xP (x)

• Similarly, we have

¬∃xP (x) ⇔ ∀x¬P (x)

¬∃x¬P (x) ⇔ ∀xP (x)
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Bound and Free Variables

∀i(i2 > i) is equivalent to ∀j(j2 > j):

• the i and j are bound variables, just like the i, j in
n∑

i=1
i2 or

n∑

j=1
j2

What about ∃i(i2 = j):

• the i is bound by ∃i; the j is free. Its value is uncon-
strained.

• if the domain is the natural numbers, the truth of this
formula depends on the value of j.
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Theorems and Proofs

Just as in propositional logic, there are axioms and proof
rules that provide a complete axiomatization for first-
order logic, independent of the domain.

A typical axiom:

• ∀x(P (x) ⇒ Q(x)) ⇒ (∀xP (x) ⇒ ∀xQ(x)).

Suppose we restrict the domain to the natural numbers,
and allow only the standard symbols of arithmetic (+, ×,
=, >, 0, 1). Typical true formulas include:

• ∀x∃y(x × y = x)

• ∀x∃y(x = y + y ∨ x = y + y + 1)

Let Prime(x) be an abbreviation for

∀y∀z((x = y × z) ⇒ ((y = 1) ∨ (y = x)))

• Prime(x) is true if x is prime
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What does the following formula say:

• ∀x(∃y(y > 1 ∧ x = y + y) ⇒
∃z1∃z2(Prime(z1) ∧ Prime(z2) ∧ x = z1 + z2))

• This is Goldbach’s conjecture: every even number
other than 2 is the sum of two primes.

◦ Is it true? We don’t know.

Is there a sound and complete axiomatization for arith-
metic?

• A small collection of axioms and inference rules such
that every true formula of arithmetic can be proved
from them

• Gödel’s Theorem: NO!
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Logic: The Big Picture

A typical logic is described in terms of

• syntax: what are the valid formulas

• semantics: under what circumstances is a formula
true

• proof theory/ axiomatization: rules for proving a
formula true

Truth and provability are quite different.

• What is provable depends on the axioms and inference
rules you use

• Provability is a mechanical, turn-the-crank process

• What is true depends on the semantics
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Syntax and Semantics for

Propositional Logic

• syntax: start with primitive propositions and close off
under ¬ and ∧ (and ∨, ⇒, ⇔ if you want)

• semantics: need a truth assignment T

◦ formally: a function T that maps primitive propo-
sitions to {true, false}.

◦ define the truth of all formulas inductively

◦ logicians write T |= A if formula A is true under
truth assignment T

◦ typical inductive clauses:

T |= A ∧ B iff T |= A and T |= B

T |= ¬A iff T 6|= A
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Tautologies and Valid Arguments

When is an argument

A1

A2
...
An

——
B

valid?

• When the truth of the premises imply the truth of the
conclusion

How do you check if an argument is valid?

• Method 1: Take an arbitrary truth assignment v.
Show that if A1, . . . , An are true under T (T |= A1,
. . . v |= An) then B is true under T .

• Method 2: Show that A1∧. . .∧An ⇒ B is a tautology
(essentially the same thing)

◦ true for every truth assignment

• Method 3: Try to prove A1 ∧ . . . ∧ An ⇒ B using a
sound axiomatization
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A Sound and Complete

Axiomatization for Propositional

Logic

All you need are two axioms schemes:

Ax1. A ⇒ (B ⇒ A)

Ax2. (A ⇒ (B ⇒ C) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

and one inference rule: Modus Ponens:

• From A ⇒ B and A infer B

Ax1 and Ax2 are axioms schemes:

• each one encodes an infinite set of axioms (obtained
by plugging in arbitrary formulas for A, B, C

A proof is a sequence of formulas A1, A2, A3, . . . such
that each Ai is either

1. An instance of Ax1 and Ax2

2. Follows from previous formulas by applying MP

• that is, there exist Aj, Ak with j, k < i such that
Aj has the form A ⇒ B, Ak is A and Ai is B.

This axiomatization is sound and complete.

• everything provable is a tautology

• all tautologies are provable
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First-Order Logic: Semantics

How do we decide if a first-order formula is true? Need:

• a domain D (what are you quantifying over)

• an interpretation I that interprets the constants and
predicate symbols:

◦ for each constant symbol c, I(c) ∈ D

∗ Which domain element is Alice?

◦ for each unary predicate P , I(P ) is a predicate on
domain D

∗ formally, I(P )(d) ∈ {true,false} for each d ∈ D

∗ Is Alice Tall? How about Bob?

◦ for each binary predicate Q, I(Q) is a predicate on
D × D:

∗ formally, I(Q)(d1, d2) ∈ {true,false} for each
d1, d2 ∈ D

∗ Is Alice taller than Bob?

• a valuation V associating with each variable x and
element V (x) ∈ D.

◦ To figure out if P (x) is true, you need to know
what x is.
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Now we can define whether a formula A is true, given a
domain D, an interpretation I , and a valuation V , writ-
ten

(I,D, V ) |= A

The definition is by induction:

(I,D, V ) |= P (x) if I(P )(V (x)) = true

(I,D, V ) |= P (c) if I(P )(I(c))) = true

(I,D, V ) |= ∀xA if (I, D, V ′) |= A for all valuations V ′

that agree with V except possibly on x

• V ′(y) = V (y) for all y 6= x

• V ′(x) can be arbitrary

(I,D, V ) |= ∃xA if (I,D, V ′) |= A for some valuation
V ′ that agrees with V except possibly on x.
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Axiomatizing First-Order Logic

There’s also an elegant complete axiomatization for first-
order logic.

• Again, the only inference rule is Modus Ponens

• Typical axiom:

∀x(P (x) ⇒ Q(x)) ⇒ (∀xP (x) ⇒ ∀xQ(x))

• Completeness was proved by Gödel in 1930
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Some Bureuacracy

• The final is on Thursday, May 13, 12-2:30 PM, in
Philips 101

• If you have conflicts (more than two exams in a 24-
hour time period) let me know as soon as possible.

◦ We may schedule a makeup; or perhaps the other
course will.

• Office hours go on as usual during study week, but
check the course web site soon.

◦ There may be small changes to accommodate the
TAs exams

• There will be a review session
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Coverage of Final

• everything covered by the first prelim

◦ emphasis on more recent material

• Chapter 4: Fundamental Counting Methods

◦ Basic methods: sum rule, product rule, division
rule

◦ Permutations and combinations

◦ Combinatorial identities (know Theorems 1–4 on
pp. 310–314)

◦ Pascal’s triangle

◦ Binomial Theorem (but not multinomial theorem)

◦ Balls and urns

◦ Inclusion-exclusion

◦ Pigeonhole principle

• Chapter 6: Probability:

◦ 6.1–6.5 (but not inverse binomial distribution)

◦ basic definitions: probability space, events

◦ conditional probability, independence, Bayes Thm.

◦ random variables
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◦ uniform, binomial, and Poisson distributions

◦ expected value and variance

◦ Markov + Chebyshev inequalities

◦ understanding Law of Large Numbers, Central Limit
Theorem

• Chapter 7: Logic:

◦ 7.1–7.4, 7.6; *not* 7.5

◦ translating from English to propositional (or first-
order) logic

◦ truth tables and axiomatic proofs

◦ algorithm verification

◦ first-order logic
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Ten Powerful Ideas

• Counting: Count without counting (combinatorics)

• Induction: Recognize it in all its guises.

• Exemplification: Find a sense in which you can
try out a problem or solution on small examples.

• Abstraction: Abstract away the inessential features
of a problem.

◦ One possible way: represent it as a graph

• Modularity: Decompose a complex problem into
simpler subproblems.

• Representation: Understand the relationships be-
tween different possible representations of the same
information or idea.

◦ Graphs vs. matrices vs. relations

• Refinement: The best solutions come from a pro-
cess of repeatedly refining and inventing alternative
solutions.

• Toolbox: Build up your vocabulary of abstract struc-
tures.
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• Optimization: Understand which improvements are
worth it.

• Probabilistic methods: Flipping a coin can be
surprisingly helpful!
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Connections: Random Graphs

Suppose we have a random graph with n vertices. How
likely is it to be connected?

• What is a random graph?

◦ If it has n vertices, there are C(n, 2) possible edges,
and 2C(n,2) possible graphs. What fraction of them
is connected?

◦ One way of thinking about this. Build a graph
using a random process, that puts each edge in
with probability 1/2.

• Given three vertices a, b, and c, what’s the probability
that there is an edge between a and b and between b
and c? 1/4

• What is the probability that there is no path of length
2 between a and c? (3/4)n−2

• What is the probability that there is a path of length
2 between a and c? 1 − (3/4)n−2

• What is the probability that there is a path of length 2
between a and every other vertex? > (1−(3/4)n−2)n−1
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Now use the binomial theorem to compute (1−(3/4)n−2)n−1

(1 − (3/4)n−2)n−1

= 1 − (n − 1)(3/4)n−2 + C(n − 1, 2)(3/4)2(n−2) + · · ·

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a
random graph will be connected.

Theorem: [Fagin, 1976] If P is any property express-
ible in first-order logic, it is either true in almost all
graphs, or false in almost all graphs.

This is called a 0-1 law.
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Connection: First-order Logic

Suppose you wanted to query a database. How do you
do it?

Modern database query language date back to SQL (struc-
tured query language), and are all based on first-order
logic.

• The idea goes back to Ted Codd, who invented the
notion of relational databases.

Suppose you’re a travel agent and want to query the air-
line database about whether there are flights from Ithaca
to Santa Fe.

• How are cities and flights between them represented?

• How do we form this query?

You’re actually asking whether there is a path from Ithaca
to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!
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