More valid formulas involving quantifiers:
o VrP(x) < Jz—P(x)
e Replacing P by =P, we get:
—Ve-P(x) < dJx——P(x)

e Therefore
—Vo—-P(x) < JxP(x)

e Similarly, we have
—JzP(z) & Ve P(x)
—Jz-P(x) < Ve P(x)



Bound and Free Variables

Vi(i* > 1) is equivalent to V(5% > 5):

e the 7 and j are bound variables, just like the 7, § in

n n

> iZor Y 4
i=1 j=1
What about 3i(i* = 5):

e the ¢ is bound by di; the 7 is free. Its value is uncon-
strained.

e if the domain is the natural numbers, the truth of this
formula depends on the value of j.



Theorems and Proofs

Just as in propositional logic, there are axioms and proof
rules that provide a complete axiomatization for first-
order logic, independent of the domain.

A typical axiom:
o Vi(P(z) = Q(x)) = (VzP(z) = VaxQ(x)).

Suppose we restrict the domain to the natural numbers,
and allow only the standard symbols of arithmetic (+, X,
=, > 0, 1). Typical true formulas include:

o Vady(x X y = 1)
eVedylr=y+yVer=y+y+1)
Let Prime(x) be an abbreviation for
VyVz((z =y x z) = ((y=1) V(y =2)))

e Prime(x) is true if x is prime



What does the following formula say:

oVr(yly >1ANx=y+y) =
A21329( Prime(z1) A Prime(ze) A x = 21 + 29))

e This is Goldbach’s conjecture: every even number
other than 2 is the sum of two primes.

o Is it true? We don’t know.

Is there a sound and complete axiomatization for arith-
metic?

e A small collection of axioms and inference rules such
that every true formula of arithmetic can be proved
from them

e (Godel’s Theorem: NO!



Logic: The Big Picture

A typical logic is described in terms of
e syntaxr: what are the valid formulas

e semantics: under what circumstances is a formula
true

e proof theory/ axiomatization: rules for proving a
formula true

Truth and provability are quite different.

e What is provable depends on the axioms and inference
rules you use

e Provability is a mechanical, turn-the-crank process

e What is true depends on the semantics



Syntax and Semantics for
Propositional Logic

e syntax: start with primitive propositions and close off
under = and A (and V, =, < if you want)

e semantics: need a truth assignment 7T’
o formally: a function 7' that maps primitive propo-
sitions to {true, false}.
o define the truth of all formulas inductively

o logicians write T = A if formula A is true under
truth assignment 7T’

o typical inductive clauses:

TEAABfT = Aand T = B
Tl-AffT £ A



Tautologies and Valid Arguments

When is an argument

Ay
Ay

Ay

B
valid?

e When the truth of the premises imply the truth of the
conclusion

How do you check if an argument is valid?

e Method 1: Take an arbitrary truth assignment wv.
Show that if Ay,..., A, are true under T (T | Aj,
...v | Ay) then B is true under T'.

e Method 2: Show that A1A...AA,, = Bisatautology
(essentially the same thing)

o true for every truth assignment

e Method 3: Try to prove A1 A ... AN A, = B using a
sound axiomatization



A Sound and Complete
Axiomatization for Propositional
Logic

All you need are two axioms schemes:

Axl. A= (B= A)
Ax2. (A= (B=0)= (A= B)= (A= 0))
and one inference rule: Modus Ponens:
e From A = B and A infer B
Ax1 and Ax2 are axioms schemes:

e cach one encodes an infinite set of axioms (obtained
by plugging in arbitrary formulas for A, B, C

A proof is a sequence of formulas Aq, Ao, As, ... such
that each A; is either

1. An instance of Ax1 and Ax2
2. Follows from previous formulas by applying MP

e that is, there exist A;, A; with j, k < ¢ such that
Aj has the foom A = B, A is A and A; is B.

This axiomatization is sound and complete.

e cverything provable is a tautology

e all tautologies are provable
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First-Order Logic: Semantics

How do we decide if a first-order formula is true? Need:
e a domain D (what are you quantifying over)

e an interpretation I that interprets the constants and
predicate symbols:
o for each constant symbol ¢, I(c) € D
x Which domain element is Alice?

o for each unary predicate P, I(P) is a predicate on
domain D

« formally, I(P)(d) € {true,false} for each d € D
* Is Alice Tall? How about Bob?

o for each binary predicate @, I(Q) is a predicate on

D x D:
« formally, 1(Q)(dy,ds) € {true,false} for each
dl, doy € D

x Is Alice taller than Bob?

e a valuation V' associating with each variable z and
element V(z) € D.

o To figure out if P(x) is true, you need to know
what z is.



Now we can define whether a formula A is true, given a
domain D, an interpretation I, and a valuation V', writ-
ten

(I,D,V)E A

The definition is by induction:
(I,D,V) = P(x)if I(P)(V(x)) = true
(I,D,V) = P(c)if I(P)(I(c))) = true
(I,D,V) EVzAif (I,D,V') E A for all valuations V"’
that agree with V' except possibly on x

o V'(y)=V(y) forally # x

e /() can be arbitrary

(I,D,V) = 3zAif (I,D,V’') = A for some valuation
V' that agrees with V' except possibly on x.

10



Axiomatizing First-Order Logic

There’s also an elegant complete axiomatization for first-
order logic.

e Again, the only inference rule is Modus Ponens

e Typical axiom:
Ve(P(z) = Q(x)) = (VaP(zr) = VzQ(x))

e Completeness was proved by Godel in 1930

11



Some Bureuacracy

e The final is on Thursday, May 13, 12-2:30 PM, in
Philips 101

e [f you have conflicts (more than two exams in a 24-
hour time period) let me know as soon as possible.

o We may schedule a makeup; or perhaps the other
course will.

e Office hours go on as usual during study week, but
check the course web site soon.

o There may be small changes to accommodate the
TAs exams

e There will be a review session

12



Coverage of Final

e cverything covered by the first prelim
o emphasis on more recent material
e Chapter 4: Fundamental Counting Methods
o Basic methods: sum rule, product rule, division
rule

o Permutations and combinations

o Combinatorial identities (know Theorems 1-4 on
pp. 310-314)

o Pascal’s triangle

o Binomial Theorem (but not multinomial theorem)
o Balls and urns

o Inclusion-exclusion

o Pigeonhole principle

e Chapter 6: Probability:
o 6.1-6.5 (but not inverse binomial distribution)
o basic definitions: probability space, events

o conditional probability, independence, Bayes Thm.

o random variables
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o uniform, binomial, and Poisson distributions

o expected value and variance

o Markov 4+ Chebyshev inequalities

o understanding Law of Large Numbers, Central Limit
Theorem

e Chapter 7: Logic:
o 7.1-7.4, 7.6; *not™ 7.5

o translating from English to propositional (or first-
order) logic
o truth tables and axiomatic proofs

o algorithm verification

o first-order logic

14



Ten Powerful Ideas

e Counting: Count without counting (combinatorics)
e Induction: Recognize it in all its guises.

e Exemplification: Find a sense in which you can
try out a problem or solution on small examples.

e Abstraction: Abstract away the inessential features
of a problem.

o One possible way: represent it as a graph

e Modularity: Decompose a complex problem into
simpler subproblems.

e Representation: Understand the relationships be-
tween different possible representations of the same
information or idea.

o Graphs vs. matrices vs. relations

e Refinement: The best solutions come from a pro-
cess of repeatedly refining and inventing alternative
solutions.

e Toolbox: Build up your vocabulary of abstract struc-
tures.
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e Optimization: Understand which improvements are
worth it.

e Probabilistic methods: Flipping a coin can be
surprisingly helpful!
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Connections: Random Graphs

Suppose we have a random graph with n vertices. How
likely is it to be connected?

e What is a random graph?

o If it has n vertices, there are C'(n, 2) possible edges,
and 2¢0"2) possible graphs. What fraction of them
is connected?

o One way of thinking about this. Build a graph
using a random process, that puts each edge in
with probability 1/2.

e (Given three vertices a, b, and ¢, what'’s the probability

that there is an edge between a and b and between b
and ¢? 1/4

e What is the probability that there is no path of length
2 between a and ¢? (3/4)" >

e What is the probability that there is a path of length
2 between a and ¢? 1 — (3/4)"2

e What is the probability that there is a path of length 2
between a and every other vertex? > (1—(3/4)"2)"~1
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Now use the binomial theorem to compute (1—(3/4)"2)"~

(1—(3/4)" =)
= 1—(n—=1)(3/4)"2+C(n—1,2)(3/4)*"2 4 ...

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a
random graph will be connected.

Theorem: [Fagin, 1976] If P is any property express-
ible in first-order logic, it is either true in almost all
oraphs, or false in almost all graphs.

This is called a 0-1 law.
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Connection: First-order Logic

Suppose you wanted to query a database. How do you
do it?

Modern database query language date back to SQL (struc-
tured query language), and are all based on first-order
logic.

e The idea goes back to Ted Codd, who invented the
notion of relational databases.

Suppose you're a travel agent and want to query the air-
line database about whether there are flights from Ithaca
to Santa Fe.

e How are cities and flights between them represented?
e How do we form this query?

You're actually asking whether there is a path from Ithaca
to Santa Fe in the graph.

e This fact cannot be expressed in first-order logic!
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