What's It All About?

• Continuous mathematics—calculus—considers objects that vary continuously

◦ distance from the wall

 \bullet Discrete mathematics considers $discrete$ objects, that come in discrete bundles

◦ number of babies: can't have 1.2

The mathematical techniques for discrete mathematics differ from those for continuous mathematics:

- counting/combinatorics
- number theory
- probability
- logic

We'll be studying these techniques in this course.

Why is it computer science?

This is basically a mathematics course:

- no programming
- lots of theorems to prove

So why is it computer science?

Discrete mathematics is the mathematics underlying almost all of computer science:

- Designing high-speed networks
- Finding good algorithms for sorting
- Doing good web searches
- Analysis of algorithms
- Proving algorithms correct

This Course

We will be focusing on:

- Tools for discrete mathematics:
	- computational number theory (handouts)
		- ∗ the mathematics behind the RSA cryptosystems
	- counting/combinatorics (Chapter 4)
	- probability (Chapter 6)
		- ∗ randomized algorithms for factoring, routing
	- logic (Chapter 7)
		- ∗ how do you prove a program is correct
- Tools for proving things:
	- induction (Chapter 2)
	- (to a lesser extent) recursion

First, some background you'll need but may not have . . .

Sets

You need to be comfortable with set notation:

 $S = \{m | 2 \le m \le 100, m \text{ is an integer}\}\$ S is the set of all m such that m is between 2 and $100\,$ and m is an integer.

Important Sets

(More notation you need to know and love \ldots)

- *N* (occasionally $I\!N$): the nonnegative integers $\{0, 1, 2, 3, \ldots\}$
- N^+ : the positive integers $\{1, 2, 3, \ldots\}$
- Z: all integers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Q: the rational numbers $\{a/b : a, b \in Z, b \neq 0\}$
- R: the real numbers
- Q^+ , R^+ : the positive rationals/reals

Set Notation

- $|S| = cardinality of (number of elements in) S$ \circ $|\{a, b, c\}| = 3$
- Subset: $A \subset B$ if every element of A is an element of B
	- Note: Lots of people (including me, but not the authors of the text) usually write $A \subset B$ only if A is a *strict* or *proper* subset of B (i.e., $A \neq B$). I write $A \subseteq B$ if $A = B$ is possible.
- Power set: $\mathcal{P}(S)$ is the set of all subsets of S (sometimes denoted 2^S).
	- \circ E.g., $\mathcal{P}(\{1,2,3\}) =$ $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$ \circ $|\mathcal{P}(S)| = 2^{|S|}$

Set Operations

- Union: $S \cup T$ is the set of all elements in S or T $\circ S \cup T = \{x | x \in S \text{ or } x \in T\}$ ◦ {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}
- Intersection: $S \cap T$ is the set of all elements in both S and T

$$
\circ \ S \cap T = \{x | x \in S, x \in T\}
$$

- \circ {1, 2, 3} ∩ {3, 4, 5} = {3}
- Set Difference: $S T$ is the set of all elements in S not in T

$$
\circ \ S - T = \{x | x \in S, x \notin T\}
$$

$$
\circ \{3, 4, 5\} - \{1, 2, 3\} = \{4, 5\}
$$

- Complementation: \overline{S} is the set of elements not in S
	- \circ What is $\overline{\{1,2,3\}}$?
	- Complementation doesn't make sense unless there is a universe, the set of elements we want to consider.

• If U is the universe, $\overline{S} = \{x | x \in U, x \notin S\}$

$$
\circ \ \overline{S} = U - S.
$$

Venn Diagrams

Sometimes a picture is worth a thousand words (at least if we don't have too many sets involved).

A Connection

Lemma: For all sets S and T , we have

$$
S = (S \cap T) \cup (S - T)
$$

Proof: We'll show (1) $S \subset (S \cap T) \cup (S - T)$ and (2) $(S \cap T) \cup (S - T) \subset S$.

For (1) , suppose $x \in S$. Either (a) $x \in T$ or (b) $x \notin T$.

If (a) holds, then $x \in S \cap T$.

If (b) holds, then $x \in S - T$.

In either case, $x \in (S \cap T) \cup (S - T)$.

Since this is true for all $x \in S$, we have (1).

For (2), suppose $x \in (S \cap T) \cup (S - T)$. Thus, either (a) $x \in (S \cap T)$ or $x \in (S - T)$. Either way, $x \in S$. Since this is true for all $x \in (S \cap T) \cup (S - T)$, we have (2).

Two Important Morals

- 1. One way to show $S = T$ is to show $S \subset T$ and $T \subset S$.
- 2. One way to show $S \subset T$ is to show that for every $x \in S$, x is also in T.

Relations

• Cartesian product: $S \times T = \{(s, t) : s \in S, t \in T\}$ \circ {1, 2, 3} \times {3, 4} = $\{(1,3), (2,3), (3,3), (1,4), (2,4), (3,4)\}\$ \circ $|S \times T| = |S| \times |T|$.

- A relation on S and T (or, on $S \times T$) is a subset of $S \times T$
- A relation on S is a subset of $S \times S$
	- Taller than is a relation on people: (Joe,Sam) is in the Taller than relation if Joe is Taller than Sam \circ *Larger than* is a relation on R:

$$
L = \{(x,y)|x,y\in R, x>y\}
$$

 \circ *Divisibility* is a relation on N:

$$
D = \{(x, y)|x, y \in N, x|y\}
$$

Reflexivity, Symmetry, Transitivity

• A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.

 $\circ \leq$ is reflexive; \lt is not

- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
	- "sibling-of" is symmetric (what about "sister of") $\circ \leq$ is not symmetric
- A relation R on S is *transitive* if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.

 $\circ \leq, \leq, \geq, \geq$ are all transitive;

◦ "parent-of" is not transitive; "ancestor-of" is

Pictorially, we have:

Transitive Closure

[[NOT DISCUSSED ENOUGH IN THE TEXT]]

The *transitive closure* of a relation R is the least relation R^* such that

- 1. $R \subset R^*$
- 2. R^* is transitive (so that if $(u, v), (v, w) \in R^*$, then so is (u, w) .

Example: Suppose $R = \{(1, 2), (2, 3), (1, 4)\}.$

- $R^* = \{(1, 2), (1, 3), (2, 3), (1, 4)\}\$
- we need to add $(1, 3)$, because $(1, 2)$, $(2, 3) \in R$

Note that we don't need to add $(2,4)$.

- If $(2,1)$, $(1,4)$ were in R, then we'd need $(2,4)$
- \bullet (1,2), (1,4) doesn't force us to add anything (it doesn't fit the "pattern" of transitivity.

Note that if R is already transitive, then $R^* = R$.

Equivalence Relations

- A relation R is an *equivalence relation* if it is reflexive, symmetric, and transitive
	- \circ = is an equivalence relation
	- \circ *Parity* is an equivalence relation on N;
		- $(x, y) \in$ *Parity* if $x y$ is even

Functions

We think of a function $f : S \to T$ as providing a mapping from S to T . But ...

Formally, a function is a relation R on $S \times T$ such that for each $s \in S$, there is a unique $t \in T$ such that $(s, t) \in R$.

If $f : S \to T$, then S is the *domain* of f, T is the *range*; ${y : f(x) = y \text{ for some } x \in S}$ is the *image*.

We often think of a function as being characterized by an algebraic formula

• $y = 3x - 2$ characterizes $f(x) = 3x - 2$.

It ain't necessarily so.

• Some formulas don't characterize functions:

 ∞ $x^2 + y^2 = 1$ defines a circle; no unique y for each x

• Some functions can't be characterized by algebraic formulas

$$
\circ f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}
$$

Function Terminology

Suppose $f : S \to T$

• f is onto (or surjective) if, for each $t \in T$, there is some $s \in S$ such that $f(s) = t$.

$$
\circ \text{ if } f: R^+ \to R^+, f(x) = x^2, \text{ then } f \text{ is onto}
$$

$$
\circ \text{ if } f: R \to R, f(x) = x^2, \text{ then } f \text{ is not onto}
$$

• f is one-to-one $(1-1,$ injective) if it is not the case that $s \neq s'$ and $f(s) = f(s')$.

 \circ if $f: R^+ \to R^+, f(x) = x^2$, then f is 1-1 o if $f: R \to R$, $f(x) = x^2$, then f is not 1-1. \bullet a function is $bijective$ if it is 1-1 and onto.

\n- of
$$
f: R^+ \to R^+, f(x) = x^2
$$
, then f is bijective.
\n- of $f: R \to R$, $f(x) = x^2$, then f is not bijective.
\n- If $f: S \to T$ is bijective, then $|S| = |T|$.
\n

Inverse Functions

If $f: S \to T$, then f^{-1} maps an element in the range of f to all the elements that are mapped to it by f .

$$
f^{-1}(t) = \{s | f(s) = t\}
$$

• if $f(2) = 3$, then $2 \in f^{-1}(3)$.

 f^{-1} is not a function from range(f) to S. It is a function if f is one-to-one.

• In this case, $f^{-1}(f(x)) = x$.

Functions You Should Know (and Love)

• Absolute value: Domain = R; Range = $\{0\} \cup R^+$

$$
|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}
$$

 $|3| = |-3| = 3$

• Floor function: Domain = R ; Range = Z $|x| =$ largest integer not greater than x

$$
\circ [3.2] = 3; \lfloor \sqrt{3} \rfloor = 1; \lfloor -2.5 \rfloor = -3
$$

• Ceiling function: Domain = R; Range = Z

 $\lceil x \rceil$ = smallest integer not less than x

$$
\circ [3.2] = 4; \lfloor \sqrt{3} \rfloor = 2; \lfloor -2.5 \rfloor = -2
$$

• Factorial function: Domain $=$ Range $= N$

$$
n! = n(n-1)(n-2)...3 \times 2 \times 1
$$

o 5! = 5 × 4 × 3 × 2 × 1 = 120
o By convention, 0! = 1

Exponents

Exponential with base a: Domain = R, Range= R^+

$$
f(x) = a^x
$$

• Note: a , the *base*, is fixed; x varies

- You probably know: $a^n = a \times \cdots \times a$ (*n* times) How do we define $f(x)$ if x is not a positive integer?
	- Want: (1) $a^{x+y} = a^x a^y$; (2) $a^1 = a^y$

This means

- $a^2 = a^{1+1} = a^1 a^1 = a \times a$
- $a^3 = a^{2+1} = a^2 a^1 = a \times a \times a$
- \bullet ...
- $a^n = a \times ... \times a$ (*n* times)

We get more:

• $a = a^1 = a^{1+0} = a \times a^0$

 \circ Therefore $a^0 = 1$

•
$$
1 = a^0 = a^{b+(-b)} = a^b \times a^{-b}
$$

• Therefore
$$
a^{-b} = 1/a^b
$$

- $a = a^1 = a^{\frac{1}{2} + \frac{1}{2}} = a^{\frac{1}{2}} \times a^{\frac{1}{2}} = (a^{\frac{1}{2}})^2$ \circ Therefore $a^{\frac{1}{2}} =$ √ \overline{a}
- Similar arguments show that $a^{\frac{1}{k}} = \sqrt[k]{a}$

$$
\bullet \ a^{mx} = a^x \times \dots \times a^x (m \text{ times}) = (a^x)^m
$$

$$
\circ \text{ Thus, } a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m.
$$

This determines a^x for all x rational. The rest follows by continuity.

Computing a^n quickly

What's the best way to compute a^{1000} ?

One way: multiply $a \times a \times a \times a \dots$

• This requires 999 multiplications.

Can we do better?

How many multiplications are needed to compute:

- \bullet a^2
- \bullet a^4
- \bullet a^8
- \bullet a^{16}
- \bullet . . .

Write 1000 in binary: 1111101000

 \bullet How many multiplications are needed to calculate a^{1000} ?

Logarithms

Logarithm base a: Domain = R^+ ; Range = R

$$
y = \log_a(x) \Leftrightarrow a^y = x
$$

• $\log_2(8) = 3$; $\log_2(16) = 4$; 3 < $\log_2(15)$ < 4

The key properties of the log function follow from those for the exponential:

- 1. $log_a(1) = 0$ (because $a^0 = 1$)
- 2. $log_a(a) = 1$ (because $a^1 = a$)
- 3. $\log_a(xy) = \log_a(x) + \log_a(y)$

Proof: Suppose $log_a(x) = z_1$ and $log_a(y) = z_2$.

Then
$$
a^{z_1} = x
$$
 and $a^{z_2} = y$.
\nTherefore $xy = a^{z_1} \times a^{z_2} = a^{z_1+z_2}$.
\nThus $\log_a(xy) = z_1 + z_2 = \log_a(x) + \log_a(y)$.
\n4. $\log_a(x^r) = r \log_a(x)$
\n5. $\log_a(1/x) = -\log_a(x)$ (because $a^{-y} = 1/a^y$)
\n6. $\log_b(x) = \log_a(x) / \log_a(b)$

Examples:

•

- $\log_2(1/4) = -\log_2(4) = -2.$
- $log_2(-4)$ undefined

 $\log_2(2^{10}3^5)$ $= \log_2(2^{10}) + \log_2(3^5)$ $= 10 \log_2(2) + 5 \log_2(3)$ $= 10 + 5 \log_2(3)$

Limit Properties of the Log Function

$$
\lim_{x \to \infty} \log(x) = \infty
$$

$$
\lim_{x \to \infty} \frac{\log(x)}{x} = 0
$$

As x gets large $log(x)$ grows without bound.

But x grows MUCH faster than $log(x)$.

In fact, $\lim_{x\to\infty} (\log(x)^m)/x = 0$

Polynomials

 $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_kx^k$ is a polynomial function.

• a_0, \ldots, a_k are the *coefficients*

You need to know how to multiply polynomials:

$$
(2x3 + 3x)(x2 + 3x + 1)
$$

= $2x3(x2 + 3x + 1) + 3x(x2 + 3x + 1)$
= $2x5 + 6x4 + 2x3 + 3x3 + 9x2 + 3x$
= $2x5 + 6x4 + 5x3 + 9x2 + 3x$

Exponentials grow MUCH faster than polynomials:

$$
\lim_{x \to \infty} \frac{a_0 + \dots + a_k x^k}{b^x} = 0 \text{ if } b > 1
$$

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

• The naive algorithm takes time $n^2/4$ on average to sort n items

• A more sophisticated algorithm times time $2n \log(n)$ Which is better?

 $\lim_{n \to \infty} (2n \log(n)/(n^2/4)) = \lim_{n \to \infty} (8 \log(n)/n) = 0$ For example,

• if $n = 1,000,000, 2n \log(n) = 40,000,000$ — this is doable $n^2/4 = 250,000,000,000$ — this is not doable

Algorithms that take exponential time are hopeless on

large datasets.

Sum and Product Notation

$$
\sum_{i=0}^{k} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k
$$

$$
\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54
$$

Can limit the set of values taken on by the $index\ i:$

$$
\sum_{\{i:2\leq i\leq 8|i \text{ even}\}} a_i = a_2 + a_4 + a_6 + a_8
$$

Can have double sums:

$$
\Sigma_{i=1}^{2} \Sigma_{j=0}^{3} a_{ij}
$$
\n
$$
= \Sigma_{i=1}^{2} (\Sigma_{j=0}^{3} a_{ij})
$$
\n
$$
= \Sigma_{j=0}^{3} a_{1j} + \Sigma_{j=0}^{3} a_{2j}
$$
\n
$$
= a_{10} + a_{11} + a_{12} + a_{13} + a_{20} + a_{21} + a_{22} + a_{23}
$$

Product notation similar:

$$
\prod_{i=0}^k a_i = a_0 a_1 \cdots a_k
$$

Changing the Limits of Summation

This is like changing the limits of integration.

$$
\bullet \Sigma_{i=1}^{n+1} a_i = \Sigma_{i=0}^n a_{i+1} = a_1 + \cdots + a_{n+1}
$$

Steps:

- Start with $\Sigma_{i=1}^{n+1} a_i$.
- Let $j = i 1$. Thus, $i = j + 1$.
- Rewrite limits in terms of $j: i = 1 \rightarrow j = 0; i =$ $n+1 \rightarrow j = n$
- Rewrite body in terms of $a_i \rightarrow a_{j+1}$
- Get $\sum_{j=0}^n a_{j+1}$
- Now replace j by i $(j$ is a dummy variable). Get

$$
\sum_{i=0}^{n} a_{i+1}
$$

Matrix Algebra

An $m \times n$ matrix is a two-dimensional array of numbers, with m rows and n columns:

> $\sqrt{ }$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} a_{m1} a_{m2} \cdots a_{mn} 1

- A $1 \times n$ matrix $[a_1 \dots a_n]$ is a row vector.
- An $m \times 1$ matrix is a *column vector*.

We can add two $m \times n$ matrices:

• If
$$
A = [a_{ij}]
$$
 and $B = [b_{ij}]$ then $A + B = [a_{ij} + b_{ij}]$.
\n
$$
\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 7 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 9 & 9 \end{bmatrix}
$$

Another important operation: *transposition*.

• If we transpose an $m \times n$ matrix, we get an $n \times m$ matrix by switching the rows and columns.

$$
\begin{bmatrix} 2 & 3 & 9 \\ 5 & 7 & 12 \end{bmatrix}^T = \begin{bmatrix} 2 & 5 \\ 3 & 7 \\ 9 & 12 \end{bmatrix}
$$

Matrix Multiplication

Given two vectors $\vec{a} = [a_1, \ldots, a_k]$ and $\vec{b} = [b_1, \ldots, b_k],$ their inner product (or dot product) is

$$
\vec{a} \cdot \vec{b} = \sum_{i=1}^{k} a_i b_i
$$

• $[1, 2, 3] \cdot [-2, 4, 6] = (1 \times -2) + (2 \times 4) + (3 \times 6) = 24.$

We can multiply an $n \times m$ matrix $A = [a_{ij}]$ by an $m \times k$ matrix $B = [b_{ij}]$, to get an $n \times k$ matrix $C = [c_{ij}]$:

$$
\bullet \ c_{ij} = \sum_{r=1}^m a_{ir} b_{rj}
$$

• this is the inner product of the *i*th row of A with the jth column of B

$$
\begin{aligned}\n\bullet \begin{bmatrix} 2 & 3 & 1 \\ 5 & 7 & 4 \end{bmatrix} \times \begin{bmatrix} 3 & 7 \\ 4 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 17 & 18 \\ 39 & 41 \end{bmatrix} \\
17 & = (2 \times 3) + (3 \times 4) + (1 \times -1) \\
&= (2, 3, 1) \cdot (3, 4, -1) \\
18 & = (2 \times 7) + (3 \times 2) + (1 \times -2) \\
&= (2, 3, 1) \cdot (7, 2, -2) \\
39 & = (5 \times 3) + (7 \times 4) + (4 \times -1) \\
&= (5, 7, 4) \cdot (3, 4, -1) \\
41 & = (5 \times 7) + (7 \times 2) + (4 \times -2) \\
&= (5, 7, 4) \cdot (7, 2, -2)\n\end{aligned}
$$

Why is multiplication defined in this strange way?

• Because it's useful!

Suppose

$$
z_1 = 2y_1 + 3y_2 + y_3 \t y_1 = 3x_1 + 7x_2
$$

\n
$$
z_2 = 5y_1 + 7y_2 + 4y_3 \t y_2 = 4x_1 + 2x_2
$$

\n
$$
y_3 = -x_1 - 2x_2
$$

Thus,
$$
\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 7 & 4 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}
$$
 and $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 2 \\ -1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Suppose we want to express the z 's in terms of the x 's:

$$
z_1 = 2y_1 + 3y_2 + y_3
$$

= 2(3x₁ + 7x₂) + 3(4x₁ + 2x₂) + (-x₁ - 2x₂)
= (2 × 3 + 3 × 4 + (-1))x₁ + (2 × 7 + 3 × 2 + (-2))x₂
= 17x₁ + 18x₂

Similarly, $z_2 = 39x_1 + 41x_2$.

$$
\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 7 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 7 \\ 4 & 2 \\ -1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
$$