What’s It All About?

e Continuous mathematics—calculus—considers objects
that vary continuously

o distance from the wall

e Discrete mathematics considers discrete objects, that
come in discrete bundles

o number of babies: can’t have 1.2

The mathematical techniques for discrete mathematics
differ from those for continuous mathematics:

e counting/combinatorics
e number theory

e probability

e logic

We'll be studying these techniques in this course.



Why is it computer science?

This is basically a mathematics course:
® 10 programming
e lots of theorems to prove

So why is it computer science?

Discrete mathematics is the mathematics underlying al-
most all of computer science:

e Designing high-speed networks

e Finding good algorithms for sorting
e Doing good web searches

e Analysis of algorithms

e Proving algorithms correct



This Course

We will be focusing on:

e 'Tools for discrete mathematics:

o computational number theory (handouts)
* the mathematics behind the RSA cryptosystems
o counting/combinatorics (Chapter 4)
o probability (Chapter 6)
x randomized algorithms for factoring, routing
o logic (Chapter 7)

x how do you prove a program is correct
e Tools for proving things:

o induction (Chapter 2)

o (to a lesser extent) recursion

First, some background you’ll need but may not have . ..



Sets

You need to be comfortable with set notation:

S ={m|2 <m < 100, m is an integer}
S is
the set of
all m
such that
m 1s between 2 and 100
and
™ 1S an nteger.



Important Sets

(More notation you need to know and love . ..)
e N (occasionally IN): the nonnegative integers {0, 1,2, 3, ...}
e N7 the positive integers {1,2,3,...}
o /: all integers {...,—3,—2,—1,0,1,2,3,...}
e (): the rational numbers {a/b:a,b € Z,b# 0}
e R: the real numbers

e Q. R™: the positive rationals/reals



Set Notation

e | S| = cardinality of (number of elements in) S
o [{a,b,ct| =3

e Subset: A C B if every element of A is an element
of B

o Note: Lots of people (including me, but not the
authors of the text) usually write A C B only if
A is a strict or proper subset of B (i.e., A # B).
[ write A C B if A= B is possible.

e Power set: P(.5) is the set of all subsets of S (some-
times denoted 2°).

oE.g., P({1,2,3}) =
(001}, {2} {3}, 41,2}, {1,381, {2,3}, {1.2,3}}
o [P(S)] =2



Set Operations

e Union: S U T is the set of all elements in .S or T'

o SUT ={xlxre SorxeT}
o{1,2,3} U{3,4,5} ={1,2,3,4,5}
e Intersection: SNT is the set of all elements in both
S and T
o SNT =A{zlz e S,xeT}
o{1,2,3} N {3,4,5} = {3}
e Set Difference: S — 7' is the set of all elements in
S notinT
oS—T={zxlre S x¢T}
o {3,4,5} —{1,2,3} = {4,5}
e Complementation: S is the set of elements not in
S
o What is {1, 2, 3}?
o Complementation doesn’t make sense unless there

is a universe, the set of elements we want to con-
sider.

o If U is the universe, S = {z|x € U,z ¢ S}
oS=U-2G.



Venn Diagrams

Sometimes a picture is worth a thousand words (at least
if we don’t have too many sets involved).



A Connection

Lemma: For all sets S and 1", we have
S=(SNTYu(S-T)

Proof: We'll show (1) S C (SNT)U (S —T) and (2)

(SNTYu(S—-T)CS.

For (1), suppose x € S. Either
(a)xeTor(b)xgT.

If (a) holds, then z € SNT.

If (b) holds, then x € S — T

In either case, x € (SNT)U (S —T).

Since this is true for all x € .S, we have (1).

For (2), suppose x € (SNT)U (S —T). Thus, either (a)
re(SNT)orxze (S—T). Either way, x € S.

Since this is true for all x € (SNT) U (S —T'), we have

(2).



Two Important Morals

1. One way to show S = T'istoshow S C T'andT C S.

2. One way to show S C T is to show that for every
x €S, risalsoin T
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Relations

e Cartesian product:
SxT={(st):s€S5,teT}

0 {1,2,3} x {3,4} =
1(1,3),(2,3),(3,3), (1,4),(2,4), (3,4)}
o|S xT|=|S]x|T|.

e A relation on S and T (or, on S x T') is a subset of
S x T

e A relation on S is a subset of § x S

o Taller than is a relation on people: (Joe,Sam) is
in the Taller than relation if Joe is Taller than Sam

o Larger than is a relation on R:
L={(y)lr,y € Rz >y}
o Divisibility is a relation on /V:

D = {(z,y)|z,y € N, x|y}
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Reflexivity, Symmetry, Transitivity

o A relation R on S is reflexive if (x,x) € R for all
reSs.

o < is reflexive; < is not

e A relation R on S is symmetric if (z,y) € R implies
(y,z) € R.

o “sibling-of” is symmetric (what about “sister of”)

o < 1s not symmetric

e A relation R on S is transitive if (z,y) € R and
(y,2) € R implies (x, z) € R.

o <, <, >, > are all transitive;

o “parent-of” is not transitive; “ancestor-of” is

Pictorially, we have:
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Transitive Closure

[NOT DISCUSSED ENOUGH IN THE TEXT]|

The transitive closure of a relation R is the least relation
R* such that

I.RCR
2. R* is transitive (so that if (u,v), (v, w) € R*, then so
is (u, w)).
Example: Suppose R = {(1,2),(2,3),(1,4)}.
o B = {(1,2),(1,3),(2,3), (1, )}
e we need to add (1, 3), because (1,2),(2,3) € R
Note that we don’t need to add (2,4).
o If (2,1), (1,4) were in R, then we'd need (2,4)

e (1,2), (1,4) doesn’t force us to add anything (it doesn’t
fit the “pattern” of transitivity.

Note that if R is already transitive, then R* = R.
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Equivalence Relations

e A relation R is an equivalence relation if it is reflex-
ive, symmetric, and transitive

o = is an equivalence relation

o Parity is an equivalence relation on V;
(x,y) € Parity if x — y is even
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Functions

We think of a function f : .S — T as providing a mapping
from S to 1. But ...

Formally, a function is a relation R on S x 1" such that for
each s € S, there is a unique t € T such that (s,t) € R.

If f:S5 — T, then S is the domain of f, 1" is the range;
{y : f(x) =y for some x € S} is the image.
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We often think of a function as being characterized by an
algebraic formula

o y = 3x — 2 characterizes f(z) = 3z — 2.
[t ain’t necessarily so.
e Some formulas don’t characterize functions:
o 2?2 +1y? = 1 defines a circle; no unique y for each z

e Some functions can’t be characterized by algebraic
formulas

0 if n 1s even

o fn) = 1 if nis odd
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Function Terminology

Suppose f: S — T

e f is onto (or surjective) if, for each t € T', there is
some s € S such that f(s) =t.

oif f: R — RY, f(x) = 22, then f is onto
oif f: R— R, f(x) =2 then f is not onto

o f is one-to-one (1-1, injective) if it is not the case

that s # " and f(s) = f(5).

oif f: R" — R™, f(x) = 2%, then fis 1-1
oif f: R— R, f(x) = 2°, then f is not 1-1.
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e a function is bijective if it is 1-1 and onto.

oif f: RT — R*, f(x) = 2, then f is bijective
oif f: R— R, f(x) = 2°, then f is not bijective.
If f:S — T is bijective, then |S| = |T|.
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Inverse Functions

If f: S — T, then f~! maps an element in the range of
f to all the elements that are mapped to it by f.

f7Ht) = {slf(s) =t}

o if f(2) =3, then 2 € f~1(3).
f~1is not a function from range(f) to S.

It is a function if f is one-to-one.

e In this case, f~1(f(x)) = x.
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Functions You Should Know
(and Love)

e Absolute value: Domain = R; Range = {0} U R™

r x>0
—x ifx <0

7] =
o|3|=|-3]=3
e Floor function: Domain = R; Range = Z
| x| = largest integer not greater than x
o [32] =3; V3] =1; |-25| = =3
e Ceiling function: Domain = R; Range = Z
|x] = smallest integer not less than x
0 [3.2] =4; [V3] =2, [-25] = -2
e [actorial function: Domain = Range = N
n!l=nn—1)(n—2)..3x2x1
obHl=5x4x3x2x1=120

o By convention, 0! = 1
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Exponents

FExponential with base a: Domain = R, Range=R™"
flz) = a’
e Note: a, the base, is fixed; x varies
e You probably know: a” =a X --- X a (n times)

How do we define f(x) if x is not a positive integer?

e Want: (1) ™ = a%a’; (2) a' = a

This means
ecd’=a""=dadal=axa
edl=c*""=dd'=axaxa
e . ..
ea"=aX...xa(n times)

We get more:

1 1+0 0

e —=a = a =a X a

o Therefore @’ = 1
ol=a"=a"M =gt xa?

o Therefore a™® = 1/a°

21



oa:alza%ﬂzaéxaéz(a%f
o Therefore a2 = Va
e Similar arguments show that ak = Va
e 0" =qa" X -+ x a®(m times) = (a*)™
o Thus, an = (arlw)m = (a)™.

This determines a® for all x rational. The rest follows by
continuity.
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Computing a'" quickly

What’s the best way to compute a'""0?

One way: multiply a X a X a X a...
e This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

.CI,2

0&4

.CI,S

CCL16
e . ..

Write 1000 in binary: 1111101000

e How many multiplications are needed to calculate a'?"0?
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Logarithms

Logarithm base a: Domain = R"; Range = R

y=log,(r)=d ==z

o 10g,(8) = 3; logy(16) = 4; 3 < logy(15) < 4

The key properties of the log function follow from those
for the exponential:

L.
2.
3.

log,(1) = 0 (because a” = 1)

= q)

log,(a) =1 (because a
log,,(2y) = log,(2) + log,(y)

Proof: Suppose log,(x) = 21 and log,(y) = 2».
Then a®! = x and a® = y.

Therefore xy = a*! x a® = a*17?2.

Thus log,(xy) = 21 + 29 = log,(x) + log,(y).

log, (") = rlog,(x)
log,(1/z) = —log,(x) (because a™¥ = 1/aV)

logy(z) = log,(z)/ log,(b)

24



Examples:

o logy(1/4) = —logy(4) = —2.
e logy(—4) undefined

[
log,(2193°)
= logy(2'") + log,(3”)
= 101logy(2) + 5logy(3)
= 10+ 5logy(3)
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Limit Properties of the Log Function

Jim_log(z) = oo

1
iy, 108L%)

T—00 €T

As x gets large log(x) grows without bound.

But x grows MUCH faster than log(z).

In fact, lim, o (log(x)™)/x = 0
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Polynomials

f(x) = ag + a1x + asx® + - + apz® is a polynomial
function.

® ag,...,a; are the coefficients
You need to know how to multiply polynomials:
(223 + 3z) (2% + 3z + 1)
20°(x? + 3z + 1) + 3x(z* + 3z + 1)

2x° + 6% + 223 + 3% 4+ 92% + 3z
= 22° + 6% + 523 + 922 + 3x

Exponentials grow MUCH faster than polynomials:

. ag+ -+ apat
lim

r—00 bx

=0ifb>1

27



Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

e The naive algorithm takes time n*/4 on average to
sort n 1tems

e A more sophisticated algorithm times time 2n log(n)

Which is better?

i (2n1og(n)/(n*/4)) = Jimy (81og(n)/n) = 0
For example,

e if n. = 1,000,000, 2nlog(n) = 40,000,000 — this is
doable
n?/4 = 250,000, 000,000 — this is not doable

Algorithms that take exponential time are hopeless on
large datasets.
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Sum and Product Notation

k )
p
> ax’ =ag+ a1x + a4+ -+ apx

1=0

k

5}
2@'2:22+32+42+52:54

(4

Can limit the set of values taken on by the index 7:

> a; = a9 + a4 + ag + ag
{i:2<i<8|i even}

Can have double sums:

2 3 N
2i=1 25=0 Qij

_ 2 3 .
= Z%:1<Zj:0 amg)
im0 Q1j T Mg G2

= Qi+ a11 + ajo + a13 + agy + a91 + G29 + A23

Product notation similar:

k
'Ho a; = aoay - ag
1=
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Changing the Limits of Summation

This is like changing the limits of integration.
° 2?211 a; = S Qip1 = a1+ -+ Qppq
Steps:
e Start with >"%! a;.

@let j=1¢—1. Thus,1=75+1.

e Rewrite limits in terms of j: 1 =1 — 7 = 0; ¢
n+1l—7=n

e Rewrite body in terms of a; — a;1;
n
o Get =7_gaji

e Now replace j by ¢ (j is a dummy variable). Get

n
PN AN
1=0
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Matrix Algebra

An m X n matriz is a two-dimensional array of numbers,
with m rows and n columns:

ayp ai2 - Aip
a1 a2 -+ A2p
 Am1 Am2 - Amn |

e A 1 X n matrix [a; ...a,] is a row vector.
e An m x 1 matrix is a column vector.
We can add two m X n matrices:
o If A=|a;;] and B = [b;;] then A+ B = |a;; + b;j].

23 37 5 10
57 4 2 99

Another important operation: transposition.

e [f we transpose an m X n matrix, we get an n X m
matrix by switching the rows and columns.

{239T§?
57 12 )1
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Matrix Multiplication

Given two vectors @ = [aq, ..., ax| and h = b1, ..., by,
their inner product (or dot product) is

— k
a-b= 'Zlaibi
0 [1,2,3]-[—2,4,6] = (1x —2)+(2x4)+(3x6) = 24.

We can multiply an n x m matrix A = |a;;] by an m x k
matrix B = [b;;], to get an n x k matrix C' = |¢;;]:
® ¢jj =%, ajpby;

e this is the inner product of the 7th row of A with the
jth column of B
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3 7
17 18
x| 4 2 | =
oo {3941]
17 =(2x3)+(3x4)+ (1 x—1)
= (2,3,1)- (3,4, —1)
18 =2x7)+(3x2)+(1x-2)
= (2,3,1)- (7,2, -2)
39 =(5x3)+(Tx4)+ (4 x—1)
= (5,7,4)- (3,4, —1)
41 =B xT)+(7Tx2)+ (4 x =2)
= (5,7,4)-(7,2,-2)
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Why is multiplication defined in this strange way?
e Because it’s useful!

Suppose

21 =21 +3Y2 +y3 Y1 =311+ 719
zo = oy1 + Ty2 +4ys yo = 4x1 + 229

Ys = —x1 — 219
Y1 Y1 3 7
1] 1231 B X1
Thus, . —{5 - 4] Yo land |y | =] 4 2 2o |
Ys Y3 —1 =2

Suppose we want to express the z’s in terms of the x’s:

z1 =2y1+3y2 + y3
= 2(3x1 + Txo) + 3(4x1 + 2x9) + (—x1 — 229)
= (2x34+3x44+ (1)1 +(2xT7T+3 X2+ (=2))xs

— 1733'1 + 181’2
Similarly, zo = 39z 4+ 41x5.
<1 231 . i ; X1
29 B 574 X9 '

—1 =2
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