CS 280 Fall '03, Prelim I Solutions

October 30, 2003

1. (a) i. Symmetric difference $-C \cap X=D$ iff $(C \cap X)+D=\varnothing$.
ii. Use set algebra to rewrite as $(A \cap X) \cup(B \cap \bar{X})=\emptyset$ perhaps using $X \cup \bar{X}=U$.
iii. This is equivalent to solving $A \cap X=\varnothing$ and $B \cap \bar{X}=\varnothing$ simultaneously.
iv. The solutions (if any) are all sets X with $B \leq X \leq \bar{A}$.
(b) Let $x \in A \cap(B+C) \Leftrightarrow x \in A \wedge x \in B+C=(B-C) \cup(C-B) \Leftrightarrow x \in A \wedge[(x \in B \wedge x \notin C) \vee(x \in$ $C \wedge x \notin B)] \Leftrightarrow(x \in A \wedge x \in B \wedge x \notin C) \vee(x \in A) \wedge(x \in C \wedge x \notin B) \Leftrightarrow[(x \in A \cap B) \wedge x \notin C] \vee[(x \in$ $A \cap C) \wedge x \notin B] \Leftrightarrow x \in(A \cap B)+(A \cap C)$.
(c) B.C. $x=\varnothing \Rightarrow|x|=0$ and $P(x)=\{\varnothing\} \Rightarrow \mid P(x)=1=2^{0}$ (or do $x=\{a\}$ if you prefer, though that doesn't catch the $|x|=0$ case).
I.S. $X=\left\{a_{1}, \ldots, a_{n}, a_{n+1}\right.$ and assume that $\forall|y|=n,|P(y)|=2^{n}$ then $P(X)=P\left(\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{a_{n+1}\right\}\right)=$ $\bar{P}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right) \cup\left\{\right.$ all subsets of X containing $\left.a_{n+1}\right\} \Rightarrow|P(x)|=2^{n}$ (induction hyp) $+2^{n}$ (since these are $\left\{a_{n+1}\right\} \cup Z$ where $\left.Z \in P\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)\right)=2^{n+1}$.
2. (a) A relation on $X \times X$ satisfying
i. $x \sim x \forall x \in X$,
ii. $x \sim y \Rightarrow y \sim x \forall x_{i} y \in X$,
iii. $\begin{aligned} & x \sim y \\ & y \sim z\end{aligned}=1 x \sim z \forall x y z$.
(b) i. $y-|x|=y-|x| \Rightarrow(x, y) \sim(x, y)$.
ii. $(x, y) \sim(a, b) \Rightarrow y-|x|=b-|a| \Rightarrow b-|a|=y-|x| \Rightarrow(a, b) \sim(x, y)$
iii. $\left.\begin{array}{rl}\quad(x, y) & \sim(a, b) \Rightarrow y-|x|=b-|a| \\ (a, b) & \sim(c, d) \Rightarrow b-|a|=d-|c|\end{array}\right\} \Rightarrow y-|x|=d-|c| \Rightarrow(x, y) \sim(c, d)$

Graphically, $y-|x|=b-|a| \Rightarrow$ when $x=0$ the graph cuts the y -axis at $y=b-|a|$, and it has slope +1 for $x>0$ and slope -1 for $x<0(y=|x|+(b-|a|))$.

Graph of $[(a, b)]$ Graph intersects y axis at $b-|a|$.
3. The relation \leq on X will be a partial order (so making X a poset) if (i) $x \leq x \forall x \in X$, (ii) $x \leq y \wedge y \leq x \Rightarrow$ $x=y \forall x_{i} y \in X$, (iii) $x \leq y \wedge y \leq z \Rightarrow x \leq z \forall x, y, z \in X$.
(a) i. Since $x x=x \forall x \in X$, then $\underline{x}=x \underline{x} \Rightarrow x \sim x \forall x \in X$.
ii. $x \leq y \Rightarrow x=x y$ and $y \leq x \Rightarrow y=y x=x y$ since operation commutative $=x$.
iii. $x \leq y \Rightarrow x=x y$ and $y \leq z \Rightarrow y=y z \Rightarrow x=x y=x(y z)=(x y) z$ since operation associative $=x z \Rightarrow x \sim z$
(b) If $\beta \in X$ satisfies $\beta \leq x \forall x \in X$, then $\beta=\beta x \forall x \in X$.
(c) Let $x, y \in X$, then $x=x^{2} \Rightarrow x y=x^{2} y=x(x y)=(x y) x \Rightarrow(x y) \leq x$. Also $y=y^{2} \Rightarrow x y=x y^{2}=(x y) y \Rightarrow$ $(x y) \leq y$.
(d) $z \leq x \Rightarrow z=z x$, and $z \leq y \Rightarrow z=z y$ so $z=z y=(z x) y=z(x y) \Rightarrow z \leq x y$.
4.

$$
\left(\begin{array}{cccc}
1 & 0 & \vdots & 105 \\
0 & 1 & \vdots & 255
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \vdots & 105 \\
-2 & 1 & \vdots & 45
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
5 & -2 & \vdots & 15 \\
-2 & 1 & \vdots & 45
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
5 & -2 & \vdots & 15 \\
-17 & 5 & \vdots & 0
\end{array}\right)
$$

(a) $\operatorname{So} \operatorname{gcd}(105,225)=15$.
(b) Also $5(105)-2(255)=15 \Rightarrow 25(105)-10(255)=75$.
(c) $6 x \equiv 9 \bmod 75 \ldots \operatorname{gcd}(6,75)=3$, so divide by 3 to get $2 x \equiv 3 \bmod 25 \ldots 2^{-1} \equiv 13 \bmod 25$, since $2.13=26 \equiv 1 \bmod 25 \Rightarrow(13) 2 x \equiv x \equiv(13) 3 \equiv 39 \equiv 14 \bmod 25$. So the 3 solutions of the original equation are 14,39 , and 64 .
5. (a) f is one-to-one (i.e., $f(a)=f(b) \Rightarrow a=b$) and onto (i.e., $y \in Y \Rightarrow \exists x \in X$ with $f(x)=y$).
(b) Suppose $f(X-A)=Y-f(A) \forall$ sets A. Now let $f(a)=f(b)$, then $f(X-\{a\})=Y-f(a)=Y-f(b)$ and if $b \neq a$ then $b \in X-\{a\} \Rightarrow f(b) \in Y-f(b) \mathbb{X}$. Now notice that $Y-f(X)=f(X-X)=f(\emptyset)=\emptyset$. Now suppose f a bijection, and let A be any set. $y \in f(X-A) \Rightarrow \exists x \in X-A$ with $f(x)=y$ $x \notin A \Rightarrow y=f(x) \notin f(A) \Rightarrow y \in Y-f(A) . y \in Y-f(A)$ and f bijection $\Rightarrow \exists$ unique x with $y=f(x)$ $x \notin A$ (otherwise $y \notin Y-f(A)) \Rightarrow y=f(x) \in f(X-A)$.
(c) Let π be a permutation of $X=\left\{x_{1}, \ldots, x_{n}\right\}$. For each x_{i}, construct the set $\left[x_{i}\right]=\left\{x_{i}, \pi\left(x_{i}\right), \pi^{2}\left(x_{i}\right), \ldots\right\}$. Then X can be written as a disjoint union of $\left[x_{i_{k}}\right]$ for some k. Hence π can be written as a composition $\pi, \circ \ldots \circ \pi_{r}$ where each π_{j} is a cyclic permutation of one of these disjoint subsets of X. Notice that if $\pi_{j}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{s}^{\prime}\right)$, meaning that $\pi_{j}\left(x_{1}^{\prime}\right)=x_{2}^{\prime} \pi_{j}\left(x_{2}^{\prime}\right)=x_{3}^{\prime}, \ldots, \pi_{j}\left(x_{s}^{\prime}\right)=x_{1}^{\prime}$, then $\pi_{j}=\left(x_{s}^{\prime} x_{s-1}^{\prime}\right) \circ \ldots \circ$ $\left(x_{s}^{\prime} x_{2}^{\prime}\right) \circ\left(x_{s}^{\prime} x_{1}^{\prime}\right)$ reading the composition from left to right.
(d) Let σ_{i} denote a swap of a pair of elements of X, and suppose that $1=\sigma_{k} \circ \ldots \circ \sigma_{2} \circ \sigma_{1}$ where k is odd and the smallest odd number from all the odd products yielding the identity. Clearly $k \geq 3$, since $k=1$ cannot give 1. $\sigma_{k}=\left(x_{i} x_{j}\right)$ for some i and j with $i<j$. From all the odd products of length k yielding 1 with $\sigma_{k}=\left(x_{i j} x_{j}\right)$, choose one having the least number of appearances of x_{j} in the $\sigma_{1}, \ldots, \sigma_{n}$. Since σ_{k} is the last swap to be performed, \exists at least one σ_{r} with $\sigma_{r}=\left(x_{i} x_{\alpha}\right)$. Choose the largest such r. If x_{α} doesn't appear in $\sigma_{r+1}, \ldots, \sigma_{k-1}$ then σ_{r} commutes with all of these, so write it next to σ_{k}. If x_{α} appears in $\sigma_{r+1}, \ldots, \sigma_{k-1}$ then since $\left(x_{\alpha} x_{\beta}\right)\left(x_{i} x_{\alpha}\right)=\left(x_{i} x_{\beta}\right)\left(x_{\alpha} x_{\beta}\right)$ we can move σ_{r} successfully up to the $(k-1)-s t$ slot, where it becomes $\left(x_{i} x_{\delta}\right)$ for some δ. If $x_{\delta}=x_{j}$ then the new σ_{k-1} and σ_{k} cancel $\mathbb{X} k$ min. Hence $x_{\delta} \neq x_{j}$. But then $\left(x_{i} x_{j}\right)\left(x_{i} x_{\delta}\right)=\left(x_{j} x_{\delta}\right)\left(x_{i} x_{j}\right)$ which reduces the number of appearances if x_{i} in the product \mathbb{X}.

