CS 280 Fall '03, HW 6

November 7, 2003

Due in class on Friday, November 14, 2003.

- 1. For the graph in Fig. 1, evaluate the following:
 - (a) the girth $g(\Gamma)$.
 - (b) the circumference $c(\Gamma)$.
 - (c) the diameter $d(\Gamma)$.
 - (d) the minimum t for which Γ is t-partite.
 - (e) draw the clique graph of Γ .
 - (f) the radius of Γ .
 - (g) the centre of Γ .
 - (h) the periphery of Γ .
 - (i) the centroid of Γ .

- 2. The "sixteen puzzle" is a game involving sliding numbered slides around to reach the canonical position of Fig. 2, the questions being:
 - does a given initial configuration have a solution?
 - find an efficient solution when it exists.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

It's usually convenient to 'number' the empty square "16." Then the problem reduces to applying permutations to the set $\{1, 2, ..., 16\}$ constrained by only permitting swaps of adjacent numbers in the square. Let's call these kinds of swaps "allowable." The group of all permutations of things is denoted S_n , and we let A_n be the end group of all <u>even</u> permutations of n things, where an <u>even</u> permutation is one which can be written as a composition of an even number of swaps.

- (a) Prove that every element of A_n can be written as a composition of 3-cycles, where a 3-cycle is of the form $(\alpha\beta\gamma)$ with α , β , and γ distinct.
- (b) Let $H \subseteq S_{16}$ comprise these permutations which take the canonical configuration to a configuration using only allowable swaps. (So the effect of elements of H is to achieve a solvable configuration!).
- (c) Prove that H is a subgroup of A_{15} .
- (d) Show that $A_{15} \subseteq H$ and hence $H = A_{15}$.
- (e) Explain how to determine if a given configuration (empty square anywhere) is solvable.
- 3. For $d \ge 3$, suppose that Γ is a graph for which all vertices have degree $\le d$ and suppose that K_{d+1} is <u>not</u> a subgraph of Γ . Prove that the chromatic number $\chi(\Gamma) \le d$. (Hint: prove by contradiction and construct a minimal counterexample.)
- 4. (a) Let the edges of K_6 be coloured using the two colours red and blue. Show that \exists at least one monochromatic triangle.
 - (b) Repeat part (a) with K_7 , showing \exists at least four monochromatic triangles.
 - (c) If now r_i denotes the number of red edges with vertex i as an endpoint and Δ denotes the number of monochromatic triangles, prove that

$$\Delta = \binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i (n-1-r_i)$$

and that

$$\Delta \ge \binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor$$

- 5. Build a depth-first search algorithm to list the strongly connected components of a directed graph Γ .
- 6. The <u>edge-connectivity</u> of an undirected graph $\Gamma = (V, E)$ is the minimum number of edges which must be removed to disconnect the graph. Show how the edge connectivity of Γ can be determined by running a maximum flow algorithm on at most |V| networks, each having O(|V|) vertices and O(|E|) edges.
- 7. Let $\Gamma = (V, E)$ be an undirected finite graph, and say that a subset $M \subseteq E$ is <u>matching</u> if $\forall v \in V \exists$ at most one $m \in M$ incident with v. Notice that there could therefore be some 'unmatched' vertices for a given M. A matching is <u>maximal</u> if there are no matchings on Γ having more edges.

Fig. 3

- (a) Find a maximal matching for the graph in Fig. 3. How many distinct maximal matchings does this graph have?
- (b) Suppose Γ is a bipartite graph with vertex partition $V = L \cup R$, and consider a new graph $\Gamma' = (V', E')$ where $V' = V \cup \{a, b\}$ (so adding two new vertices) and

$$E' = \{(a,l) | l \in L\} \cup \{(l,r) | l \in L, r \in R, (l,r) \in E\} \cup \{(r,b) | r \in R\},$$

with each edge of weight 1, so making Γ' into a directed graph. Show that \exists matching M on Γ with |M| = n iff \exists flow on Γ' (from a to b) with total flow (not necessarily max) = n, and hence the size of a maximal matching on a bipartite graph Γ is the maximum network flow on the associated Γ' .

- 8. Show that for Γ strongly connected with |V| = n, |E| = m,
 - (a) the radius $r(\Gamma) \equiv \left\lceil \frac{n-1}{m-n+1} \right\rceil$.
 - (b) given the values n and $m \exists$ graph Γ for which equality holds in part (i).
 - (c) if nbr(x) denotes the set of all neighbors of x, and if Γ is a complete graph, then if n_0 satisfies

$$|nbr(x_0) - \{x_0\}| = \max |nbr(n) - \{n\}|$$

then x_0 is a centre of $\Gamma^{x \in V}$ and $r(\Gamma) \leq 2$.

- (d) if Γ is complete with $r(\Gamma) = 2$, then $\forall y \in V \exists$ centre x_0 with $(x_0, y) \in E$.
- (e) if Γ is complete with $r(\Gamma) = 2$ then \exists at least 3 centres.
- 9. Let Γ be strongly connected, without loops (edges from v to v), and not simply a single cycle. Show that the diameter $d(\Gamma) \ge \left\lceil \frac{2(n-1)}{m-n+1} \right\rceil$ with n and m as in question 6, and that given any $n, m \exists$ graph Γ for which equality holds.