
CS 280 Fall ’03, HW 6

November 7, 2003

Due in class on Friday, November 14, 2003.

1. For the graph in Fig. 1, evaluate the following:

(a) the girth g(Γ).

(b) the circumference c(Γ).

(c) the diameter d(Γ).

(d) the minimum t for which Γ is t-partite.

(e) draw the clique graph of Γ.

(f) the radius of Γ.

(g) the centre of Γ.

(h) the periphery of Γ.

(i) the centroid of Γ.

Fig. 1
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2. The “sixteen puzzle” is a game involving sliding numbered slides around to reach the canonical position of
Fig. 2, the questions being:

• does a given initial configuration have a solution?
• find an efficient solution when it exists.

Fig. 2

It’s usually convenient to ‘number’ the empty square “16.” Then the problem reduces to applying permutations
to the set {1, 2, . . . , 16} constrained by only permitting swaps of adjacent numbers in the square. Let’s call
these kinds of swaps “allowable.” The group of all permutations of things is denoted Sn, and we let An be the
end group of all even permutations of n things, where an even permutation is one which can be written as a
composition of an even number of swaps.

(a) Prove that every element of An can be written as a composition of 3-cycles, where a 3-cycle is of the form
(αβγ) with α, β, and γ distinct.

(b) Let H ⊆ S16 comprise these permutations which take the canonical configuration to a configuration using
only allowable swaps. (So the effect of elements of H is to achieve a solvable configuration!).

(c) Prove that H is a subgroup of A15.

(d) Show that A15 ⊆ H and hence H = A15.

(e) Explain how to determine if a given configuration (empty square anywhere) is solvable.

3. For d ≥ 3, suppose that Γ is a graph for which all vertices have degree ≤ d and suppose that Kd+1 is not a
subgraph of Γ. Prove that the chromatic number χ(Γ) ≤ d. (Hint: prove by contradiction and construct a
minimal counterexample.)

4. (a) Let the edges ofK6 be coloured using the two colours red and blue. Show that ∃ at least one monochromatic
triangle.

(b) Repeat part (a) with K7, showing ∃ at least four monochromatic triangles.
(c) If now ri denotes the number of red edges with vertex i as an endpoint and ∆ denotes the number of

monochromatic triangles, prove that

∆ =
n
3
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and that

∆ ≥ n
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5. Build a depth-first search algorithm to list the strongly connected components of a directed graph Γ.

6. The edge-connectivity of an undirected graph Γ = (V,E) is the minimum number of edges which must be
removed to disconnect the graph. Show how the edge connectivity of Γ can be determined by running a
maximum flow algorithm on at most |V | networks, each having O(|V |) vertices and O(|E|) edges.

7. Let Γ = (V,E) be an undirected finite graph, and say that a subset M ⊆ E is matching if ∀v ∈ V ∃ at most
one m ∈M incident with v. Notice that there could therefore be some ‘unmatched’ vertices for a given M . A
matching is maximal if there are no matchings on Γ having more edges.

Fig. 3

(a) Find a maximal matching for the graph in Fig. 3. How many distinct maximal matchings does this graph
have?

(b) Suppose Γ is a bipartite graph with vertex partition V = L ∪R, and consider a new graph Γ = (V ,E )
where V = V ∪ {a, b} (so adding two new vertices) and

E = {(a, l)|l ∈ L} ∪ {(l, r)|l ∈ L, r ∈ R, (l, r) ∈ E} ∪ {(r, b)|r ∈ R},

with each edge of weight 1, so making Γ into a directed graph. Show that ∃ matching M on Γ with
|M | = n iff ∃ flow on Γ (from a to b) with total flow (not necessarily max) = n, and hence the size of a
maximal matching on a bipartite graph Γ is the maximum network flow on the associated Γ .

8. Show that for Γ strongly connected with |V | = n, |E| = m,

(a) the radius r(Γ) ≡ n−1
m−n+1 .

(b) given the values n and m ∃ graph Γ for which equality holds in part (i).
(c) if nbr(x) denotes the set of all neighbors of x, and if Γ is a complete graph, then if n0 satisfies

|nbr(x0)− {x0}| = max |nbr(n)− {n}|

then x0 is a centre of Γ
x∈V and r(Γ) ≤ 2.

(d) if Γ is complete with r(Γ) = 2, then ∀y ∈ V ∃ centre x0 with (x0, y) ∈ E.
(e) if Γ is complete with r(Γ) = 2 then ∃ at least 3 centres.

9. Let Γ be strongly connected, without loops (edges from v to v), and not simply a single cycle. Show that the

diameter d(Γ) ≥ 2(n−1)
m−n+1 with n and m as in question 6, and that given any n,m ∃ graph Γ for which equality

holds.
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