## CS 280 Fall '03, HW 6

November 7, 2003

Due in class on Friday, November 14, 2003.

1. For the graph in Fig. 1, evaluate the following:
(a) the girth $g(\Gamma)$.
(b) the circumference $c(\Gamma)$.
(c) the diameter $d(\Gamma)$.
(d) the minimum $t$ for which $\Gamma$ is t-partite.
(e) draw the clique graph of $\Gamma$.
(f) the radius of $\Gamma$.
(g) the centre of $\Gamma$.
(h) the periphery of $\Gamma$.
(i) the centroid of $\Gamma$.

2. The "sixteen puzzle" is a game involving sliding numbered slides around to reach the canonical position of Fig. 2, the questions being:

- does a given initial configuration have a solution?
- find an efficient solution when it exists.

| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 |
| 13 | 14 | 15 |  |

Fig. 2
It's usually convenient to 'number' the empty square " 16 ." Then the problem reduces to applying permutations to the set $\{1,2, \ldots, 16\}$ constrained by only permitting swaps of adjacent numbers in the square. Let's call these kinds of swaps "allowable." The group of all permutations of things is denoted $S_{n}$, and we let $A_{n}$ be the end group of all even permutations of $n$ things, where an even permutation is one which can be written as a composition of an even number of swaps.
(a) Prove that every element of $A_{n}$ can be written as a composition of 3 -cycles, where a 3 -cycle is of the form $(\alpha \beta \gamma)$ with $\alpha, \beta$, and $\gamma$ distinct.
(b) Let $H \subseteq S_{16}$ comprise these permutations which take the canonical configuration to a configuration using only allowable swaps. (So the effect of elements of $H$ is to achieve a solvable configuration!).
(c) Prove that $H$ is a subgroup of $A_{15}$.
(d) Show that $A_{15} \subseteq H$ and hence $H=A_{15}$.
(e) Explain how to determine if a given configuration (empty square anywhere) is solvable.
3. For $d \geq 3$, suppose that $\Gamma$ is a graph for which all vertices have degree $\leq d$ and suppose that $K_{d+1}$ is not a subgraph of $\Gamma$. Prove that the chromatic number $\chi(\Gamma) \leq d$. (Hint: prove by contradiction and construct a minimal counterexample.)
4. (a) Let the edges of $K_{6}$ be coloured using the two colours red and blue. Show that $\exists$ at least one monochromatic triangle.
(b) Repeat part (a) with $K_{7}$, showing $\exists$ at least four monochromatic triangles.
(c) If now $r_{i}$ denotes the number of red edges with vertex $i$ as an endpoint and $\Delta$ denotes the number of monochromatic triangles, prove that

$$
\Delta=\binom{n}{3}-\frac{1}{2} \sum_{i=1}^{n} r_{i}\left(n-1-r_{i}\right)
$$

and that

$$
\Delta \geq\binom{ n}{3}-\left\lfloor\frac{n}{2}\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor
$$

5. Build a depth-first search algorithm to list the strongly connected components of a directed graph $\Gamma$.
6. The edge-connectivity of an undirected graph $\Gamma=(V, E)$ is the minimum number of edges which must be removed to disconnect the graph. Show how the edge connectivity of $\Gamma$ can be determined by running a maximum flow algorithm on at most $|V|$ networks, each having $O(|V|)$ vertices and $O(|E|)$ edges.
7. Let $\Gamma=(V, E)$ be an undirected finite graph, and say that a subset $M \subseteq E$ is matching if $\forall v \in V \exists$ at most one $m \in M$ incident with $v$. Notice that there could therefore be some 'unmatched' vertices for a given $M$. A matching is maximal if there are no matchings on $\Gamma$ having more edges.


Fig. 3
(a) Find a maximal matching for the graph in Fig. 3. How many distinct maximal matchings does this graph have?
(b) Suppose $\Gamma$ is a bipartite graph with vertex partition $V=L \cup R$, and consider a new graph $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\{a, b\}$ (so adding two new vertices) and

$$
E^{\prime}=\{(a, l) \mid l \in L\} \cup\{(l, r) \mid l \in L, r \in R,(l, r) \in E\} \cup\{(r, b) \mid r \in R\}
$$

with each edge of weight 1 , so making $\Gamma^{\prime}$ into a directed graph. Show that $\exists$ matching $M$ on $\Gamma$ with $|M|=n$ iff $\exists$ flow on $\Gamma^{\prime}$ (from $a$ to $b$ ) with total flow (not necessarily max) $=n$, and hence the size of a maximal matching on a bipartite graph $\Gamma$ is the maximum network flow on the associated $\Gamma^{\prime}$.
8. Show that for $\Gamma$ strongly connected with $|V|=n,|E|=m$,
(a) the radius $r(\Gamma) \equiv\left\lceil\frac{n-1}{m-n+1}\right\rceil$.
(b) given the values $n$ and $m \exists$ graph $\Gamma$ for which equality holds in part (i).
(c) if $n b r(x)$ denotes the set of all neighbors of $x$, and if $\Gamma$ is a complete graph, then if $n_{0}$ satisfies

$$
\left|n b r\left(x_{0}\right)-\left\{x_{0}\right\}\right|=\max |n b r(n)-\{n\}|
$$

then $x_{0}$ is a centre of $\Gamma^{x \in V}$ and $r(\Gamma) \leq 2$.
(d) if $\Gamma$ is complete with $r(\Gamma)=2$, then $\forall y \in V \exists$ centre $x_{0}$ with $\left(x_{0}, y\right) \in E$.
(e) if $\Gamma$ is complete with $r(\Gamma)=2$ then $\exists$ at least 3 centres.
9. Let $\Gamma$ be strongly connected, without loops (edges from $v$ to $v$ ), and not simply a single cycle. Show that the diameter $d(\Gamma) \geq\left\lceil\frac{2(n-1)}{m-n+1}\right\rceil$ with $n$ and $m$ as in question 6 , and that given any $n, m \exists$ graph $\Gamma$ for which equality holds.

