
CS 280 - Homework 2
Solutions

1. Let a, b, and c be positive integers with a and b being coprime.
i) Prove that a| bc =⇒ a| c.
� Since a and b are coprime, gcd(a, b) = 1. Thus there must exist integers s and t such that

as + bt = 1. (1) Also, since a| bc, there must exist an integer r such that ar = bc. (2)

as + bt = 1 (1)

c(as + bt) = c

cas + cbt = c

cas + (ar)t = c (2)

a(cs + rt) = c

ak = c [k = cs + rt]

Thus, since ak = c, a| c. �
The most common problem on this question was to argue as follows: Since a| bc, ∃ k ∈ Z such

that ak = bc. Since a and b are coprime, it follows that ∃ r such that k = rb, or b| k. The flaw
in this approach lies in the last step. The last assertion (“it follows that . . . ”) is equivalent to
the statement that for a, b coprime, b| ak =⇒ b| k. But this is just a restatement of the original
claim; to assert this claim, you need to prove the original problem.

ii) Prove that a| c ∧ b| c =⇒ ab| c.
� Again, since a and b are coprime, gcd(a, b) = 1. Thus there must exist integers s and t such

that as + bt = 1. (1) Note that since a| c and b| c, there must exist integers r and q such that
ar = c and bq = c. (2)

as + bt = 1 (1)

c(as + bt) = c

cas + cbt = c

(bq)as + (ar)bt = c (2)

ab(qs + rt) = c

ak = c [k = qs + rt]

Thus, since abk = c, ab| c. �

iii) Prove that a−1 ≡ s (mod b) if as + bt = 1.
�

as + bt = 1

(as + bt) mod b = 1 mod b

(as) mod b + (bt) mod b = 1 mod b

as mod b = 1 mod b [bt mod b = 0]

as ≡ 1 (mod b)

a−1as ≡ a−1 (mod b)

s ≡ a−1 (mod b)
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Thus the claim is proved. �
For completeness, you should include the last two lines of this proof, rather than simply con-

cluding that as ≡ 1 (mod b).

2. i) Use the matrix layout algorithm shown in class to find gcd(7245, 4784), and express it
in the form 7245s + 4784t.

� The matrix layout algorithm for gcd(7245, 4784) proceeds as follows:

(
1 0 7245
0 1 4784

)
r1=r1−r2−→

(
1 −1 2461
0 1 4784

)
r2=r2−r1−→(

1 −1 2461
−1 2 2323

)
r1=r1−r2−→

(
2 −3 138
−1 2 2323

)
r2=r2−16r1−→(

2 −3 138
−33 50 115

)
r1=r1−r2−→

(
35 −53 23
−33 50 115

)
r2=r2−5r1−→(

35 −53 23
−208 315 0

)

Thus 7245 · 35 + 4784 · (−53) = 23, and we have gcd(7245, 4784), s = 35 and t = −53. �

ii) If it exists, give the value of the multiplicative inverse of 91 modulo 237.
� We first find gcd(91, 237) by the matrix layout algorithm:

(
1 0 91
0 1 237

)
r2=r2−2r1−→

(
1 0 91
−2 1 55

)
r1=r1−r2−→(

3 −1 36
2 −1 55

)
r2=r2−r1−→

(
3 −1 36
−5 2 19

)
r1=r1−r2−→(

8 −3 17
−5 2 19

)
r2=r2−r1−→

(
8 −3 17
−13 5 2

)
r1=r1−8r2−→(

112 −43 1
−13 5 2

)
r2=r2−2r1−→

(
112 −43 1
−237 91 0

)

Thus:

1 = 91 · 112 + 237 · (−43)

1 mod 237 =
(
91 · 112 + 237 · (−43)

)
mod 237

1 mod 237 =
(
91 · 112

)
mod 237 +

(
237 · (−43)

)
mod 237

1 ≡ 91 · 112 (mod 237)

Thus we find that [91]−1 = [112]. �



3. Prove that for any integers a and b, ab = gcd(a, b)·lcm(a, b).
Note that this proof neglects to consider the case when a or b is negative, for clarity. It is trivial

to include this. � Any positive integer can be represented uniquely by its prime factorization as
follows, where pi is the sequence of prime numbers:

x =
∞∏
i=1

pχi
i

We represent a and b in this way:

a =
∞∏
i=1

pαi
i b =

∞∏
i=1

pβi
i

As given in class, we can represent the gcd and the lcm of two numbers as follows:

gcd(a, b) =
∞∏
i=1

p
min(αi,βi)
i lcm(a, b) =

∞∏
i=1

p
max(αi,βi)
i

We thus use the fact that min(x, y) + max(x, y) = x + y to show:

gcd(a, b) · lcm(a, b) =
∞∏
i=1

p
min(αi,βi)
i ·

∞∏
i=1

p
max(αi,βi)
i

=
∞∏
i=1

p
min(αi,βi)
i · pmax(αi,βi)

i

=
∞∏
i=1

p
min(αi,βi)+max(αi,βi)
i

=
∞∏
i=1

pαi+βi
i

=
∞∏
i=1

pαi
i · pβi

i

=
∞∏
i=1

pαi
i ·

∞∏
i=1

pβi
i

gcd(a, b) · lcm(a, b) = ab

Thus the claim is proved. �

4. Let p be prime. Prove that (p− 1)! ≡ −1 (mod p).
In the following proof, the equivalence relation ≡ is understood to mean “equivalent (mod p).”

� Since p − 1 ≡ −1, we need only to prove that (p − 2)! ≡ −1; together, these will imply that
(p − 1)(p − 2)! = (p − 1)! ≡ −1 · 1 = −1. To show that (p − 2)! ≡ −1, we will first prove that
every integer x between 2 and p− 2 has a unique inverse such that x−1 6≡ x.

Take an integer x = p− i, 2 ≤ i ≤ p− 2. We show that x has an inverse as follows. Since p is
prime and x < p, we know that p and x are coprime, and thus we can write sx + pt = 1 for some
s, t ∈ Z. Thus by the solution to 1(iii), we know that x−1 ≡ s.

To show that x−1 6≡ x, we simply solve for a when a is equal to its inverse a−1. By definition,
aa−1 ≡ 1. When a = a−1, this is just a2 ≡ 1, or a ≡

√
1. The two cases for which this is true are

a ≡ 1 and a ≡ −1 ≡ p− 1. Since we know that 2 ≤ x ≤ p− 2, we have shown that x−1 6≡ x.



We now show that each inverse is unique. Assume that we have two integers a and b such that
a−1 ≡ b−1. Prove that this implies a ≡ b.

a−1 ≡ b−1

aa−1 ≡ ab−1

1 ≡ ab−1

b ≡ ab−1b

b ≡ a

Thus if a−1 ≡ b−1, we know that a ≡ b, and thus the inverse of x is unique up to p.
We now have enough information to prove that (p − 2)! ≡ 1. For p > 2, the key here is that

every p− i in (p− 2)! = (p− 2)(p− 3) · · · (3)(2) has exactly one unique inverse, which is different
from p− i. That means that we can split up this product into pairs of elements that are inverses
of each other. Since each of these pairs multiplies to 1, by the definition of the inverse, the whole
product is simply (p− 2)! ≡ 1. Note that since p > 2, we know that p is odd, and thus there will
be an even number of terms in (p− 2)(p− 3) · · · (3)(2). For p = 2, the special case, simply note
that p− 2 = 0, and thus that (p− 2)! = 0! = 1. Thus for all p, (p− 2)! ≡ 1.

Now, since we know that p− 1 ≡ −1 and (p− 2)! ≡ 1, it is clear that

(p− 1)(p− 2)! = (p− 1)! ≡ −1 · 1 = −1

Thus the claim is proved. �
5. Solve each of the following for x.
i) 432x ≡ 2 (mod 91)
� Note that 432 ≡ 68 (mod 91). We first use the matrix layout algorithm to find [68]−1:(

1 0 68
0 1 91

)
r2=r2−r1−→

(
1 0 68
−2 1 23

)
r1=r1−2r2−→(

3 −2 22
−1 1 23

)
r2=r2−r1−→

(
3 −2 22
−4 3 1

)
r1=r1−22r2−→(

91 −68 0
−4 3 1

)
Thus we have

1 = 68 · (−4) + 91 · 3
1 mod 91 =

(
68 · (−4) + 91 · 3) mod 91

1 mod 91 =
(
68 · (−4)

)
mod 91 +

(
91 · 3

)
mod 91

1 ≡ 68 · (−4) (mod 91)

This implies that [68]−1 = [−4]. We now verify the conditions necessary to solve the equation.
If d = gcd(432, 91), then it is true that d = 1. It is also true that d| b, since 1| 2. We then find [x]
as follows:

432x ≡ 2 (mod 91)

432−1 · 432x ≡ 432−1 · 2 (mod 91)

x ≡ (−4) · 2 (mod 91)

x ≡ −8 ≡ 83 (mod 91)

Thus [x] = [83]. �



ii) 23x ≡ 16 (mod 107)
� We first use the matrix layout algorithm to find [23]−1:(

1 0 23
0 1 107

)
r2=r2−4r1−→

(
1 0 23
−4 1 15

)
r1=r1−r2−→(

5 −1 8
−4 1 15

)
r2=r2−r1−→

(
5 −1 8
−9 2 7

)
r1=r1−r2−→(

14 −3 1
−9 2 7

)
r2=r2−7r1−→

(
14 −3 1
−107 23 0

)
Thus we have

1 = 23 · 14 + 107 · (−3)

1 mod 107 =
(
23 · 14 + 107 · (−3) mod 107

1 mod 107 =
(
23 · 14

)
mod 107 +

(
107 · (−3)

)
mod 107

1 ≡ 23 · 14 (mod 107)

This implies that [23]−1 = [14]. We now verify the conditions necessary to solve the equation. If
d = gcd(23, 107), then it is true that d = 1. It is also true that d| b, since 1| 16. We then find [x]
as follows:

23x ≡ 16 (mod 107)

23−1 · 23x ≡ 432−1 · 16 (mod 107)

x ≡ 14 · 16 (mod 107)

x ≡ 224 ≡ 10 (mod 107)

Thus [x] = [10]. �




