1. Let a, b, and c be positive integers with a and b being coprime.
i) Prove that $a|b c \Longrightarrow a| c$.
\square Since a and b are coprime, $\operatorname{gcd}(a, b)=1$. Thus there must exist integers s and t such that $a s+b t=1$. (1) Also, since $a \mid b c$, there must exist an integer r such that $a r=b c$. (2)

$$
\begin{align*}
a s+b t & =1 \tag{1}\\
c(a s+b t) & =c \\
c a s+c b t & =c \\
c a s+(a r) t & =c \tag{2}\\
a(c s+r t) & =c \\
a k & =c
\end{align*} \quad[k=c s+r t]
$$

Thus, since $a k=c, a \mid c$.
The most common problem on this question was to argue as follows: Since $a \mid b c, \exists k \in \mathbb{Z}$ such that $a k=b c$. Since a and b are coprime, it follows that $\exists r$ such that $k=r b$, or $b \mid k$. The flaw in this approach lies in the last step. The last assertion ("it follows that ...") is equivalent to the statement that for a, b coprime, $b|a k \Longrightarrow b| k$. But this is just a restatement of the original claim; to assert this claim, you need to prove the original problem.
ii) Prove that $a|c \wedge b| c \Longrightarrow a b \mid c$.
\square Again, since a and b are coprime, $\operatorname{gcd}(a, b)=1$. Thus there must exist integers s and t such that $a s+b t=1$. (1) Note that since $a \mid c$ and $b \mid c$, there must exist integers r and q such that $a r=c$ and $b q=c .(2)$

$$
\begin{align*}
a s+b t & =1 \tag{1}\\
c(a s+b t) & =c \\
c a s+c b t & =c \\
(b q) a s+(a r) b t & =c \tag{2}\\
a b(q s+r t) & =c \\
a k & =c \quad[k) \\
& \quad[k=q s+r t]
\end{align*}
$$

Thus, since $a b k=c, a b \mid c$.
iii) Prove that $a^{-1} \equiv s(\bmod b)$ if $a s+b t=1$.

$$
\begin{aligned}
a s+b t & =1 \\
(a s+b t) \bmod b & =1 \bmod b \\
(a s) \bmod b+(b t) \bmod b & =1 \bmod b \\
a s \bmod b & =1 \bmod b \quad[b t \bmod b=0] \\
a s & \equiv 1 \quad(\bmod b) \quad \\
a^{-1} a s & \equiv a^{-1} \quad(\bmod b) \\
s & \equiv a^{-1} \quad(\bmod b)
\end{aligned}
$$

Thus the claim is proved.
For completeness, you should include the last two lines of this proof, rather than simply concluding that $a s \equiv 1(\bmod b)$.
2. i) Use the matrix layout algorithm shown in class to find $\operatorname{gcd}(7245,4784)$, and express it in the form $7245 s+4784 t$.The matrix layout algorithm for $\operatorname{gcd}(7245,4784)$ proceeds as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll|l}
1 & 0 & 7245 \\
0 & 1 & 4784
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}}\left(\begin{array}{cc|c}
1 & -1 & 2461 \\
0 & 1 & 4784
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}} \\
& \left(\begin{array}{cc|c}
1 & -1 & 2461 \\
-1 & 2 & 2323
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}}\left(\begin{array}{cc|c}
2 & -3 & 138 \\
-1 & 2 & 2323
\end{array}\right) \xrightarrow{r_{2}=r_{2}-16 r_{1}} \\
& \left(\begin{array}{cc|c}
2 & -3 & 138 \\
-33 & 50 & 115
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}}\left(\begin{array}{cc|c}
35 & -53 & 23 \\
-33 & 50 & 115
\end{array}\right) \xrightarrow{r_{2}=r_{2}-5 r_{1}} \\
& \left(\begin{array}{cc|c}
\mathbf{3 5} & -\mathbf{5 3} & \mathbf{2 3} \\
-208 & 315 & 0
\end{array}\right)
\end{aligned}
$$

Thus $7245 \cdot 35+4784 \cdot(-53)=23$, and we have $\operatorname{gcd}(7245,4784), s=35$ and $t=-53$.
ii) If it exists, give the value of the multiplicative inverse of 91 modulo 237 .
\square We first find $\operatorname{gcd}(91,237)$ by the matrix layout algorithm:

$$
\begin{gathered}
\left(\begin{array}{cc|c}
1 & 0 & 91 \\
0 & 1 & 237
\end{array}\right) \xrightarrow{r_{2}=r_{2}-2 r_{1}}\left(\begin{array}{cc|c}
1 & 0 & 91 \\
-2 & 1 & 55
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}} \\
\left(\begin{array}{cc|c}
3 & -1 & 36 \\
2 & -1 & 55
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}}\left(\begin{array}{cc|c}
3 & -1 & 36 \\
-5 & 2 & 19
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}} \\
\left(\begin{array}{cc|c}
8 & -3 & 17 \\
-5 & 2 & 19
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}}\left(\begin{array}{cc|c}
8 & -3 & 17 \\
-13 & 5 & 2
\end{array}\right) \xrightarrow{r_{1}=r_{1}-8 r_{2}} \\
\left(\begin{array}{cc|c}
112 & -43 & 1 \\
-13 & 5 & 2
\end{array}\right) \xrightarrow{r_{2}=r_{2}-2 r_{1}}\left(\begin{array}{cc|c}
\mathbf{1 1 2} & -\mathbf{4 3} & \mathbf{1} \\
-237 & 91 & 0
\end{array}\right)
\end{gathered}
$$

Thus:

$$
\begin{aligned}
1 & =91 \cdot 112+237 \cdot(-43) \\
1 \bmod 237 & =(91 \cdot 112+237 \cdot(-43)) \bmod 237 \\
1 \bmod 237 & =(91 \cdot 112) \bmod 237+(237 \cdot(-43)) \bmod 237 \\
1 & \equiv 91 \cdot 112 \quad(\bmod 237)
\end{aligned}
$$

Thus we find that $[91]^{-1}=[112]$.
3. Prove that for any integers a and $b, a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

Note that this proof neglects to consider the case when a or b is negative, for clarity. It is trivial to include this.Any positive integer can be represented uniquely by its prime factorization as follows, where p_{i} is the sequence of prime numbers:

$$
x=\prod_{i=1}^{\infty} p_{i}^{\chi_{i}}
$$

We represent a and b in this way:

$$
a=\prod_{i=1}^{\infty} p_{i}^{\alpha_{i}} \quad b=\prod_{i=1}^{\infty} p_{i}^{\beta_{i}}
$$

As given in class, we can represent the gcd and the lcm of two numbers as follows:

$$
\operatorname{gcd}(a, b)=\prod_{i=1}^{\infty} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \quad \operatorname{lcm}(a, b)=\prod_{i=1}^{\infty} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)}
$$

We thus use the fact that $\min (x, y)+\max (x, y)=x+y$ to show:

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =\prod_{i=1}^{\infty} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \cdot \prod_{i=1}^{\infty} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)} \\
& =\prod_{i=1}^{\infty} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \cdot p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)} \\
& =\prod_{i=1}^{\infty} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)+\max \left(\alpha_{i}, \beta_{i}\right)} \\
& =\prod_{i=1}^{\infty} p_{i}^{\alpha_{i}+\beta_{i}} \\
& =\prod_{i=1}^{\infty} p_{i}^{\alpha_{i}} \cdot p_{i}^{\beta_{i}} \\
& =\prod_{i=1}^{\infty} p_{i}^{\alpha_{i}} \cdot \prod_{i=1}^{\infty} p_{i}^{\beta_{i}} \\
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =a b
\end{aligned}
$$

Thus the claim is proved.
4. Let p be prime. Prove that $(p-1)!\equiv-1(\bmod p)$.

In the following proof, the equivalence relation \equiv is understood to mean "equivalent $(\bmod p)$." \square Since $p-1 \equiv-1$, we need only to prove that $(p-2)!\equiv-1$; together, these will imply that $(p-1)(p-2)!=(p-1)!\equiv-1 \cdot 1=-1$. To show that $(p-2)!\equiv-1$, we will first prove that every integer x between 2 and $p-2$ has a unique inverse such that $x^{-1} \not \equiv x$.

Take an integer $x=p-i, 2 \leq i \leq p-2$. We show that x has an inverse as follows. Since p is prime and $x<p$, we know that p and x are coprime, and thus we can write $s x+p t=1$ for some $s, t \in \mathbb{Z}$. Thus by the solution to 1 (iii), we know that $x^{-1} \equiv s$.

To show that $x^{-1} \not \equiv x$, we simply solve for a when a is equal to its inverse a^{-1}. By definition, $a a^{-1} \equiv 1$. When $a=a^{-1}$, this is just $a^{2} \equiv 1$, or $a \equiv \sqrt{1}$. The two cases for which this is true are $a \equiv 1$ and $a \equiv-1 \equiv p-1$. Since we know that $2 \leq x \leq p-2$, we have shown that $x^{-1} \not \equiv x$.

We now show that each inverse is unique. Assume that we have two integers a and b such that $a^{-1} \equiv b^{-1}$. Prove that this implies $a \equiv b$.

$$
\begin{aligned}
a^{-1} & \equiv b^{-1} \\
a a^{-1} & \equiv a b^{-1} \\
1 & \equiv a b^{-1} \\
b & \equiv a b^{-1} b \\
b & \equiv a
\end{aligned}
$$

Thus if $a^{-1} \equiv b^{-1}$, we know that $a \equiv b$, and thus the inverse of x is unique up to p.
We now have enough information to prove that $(p-2)!\equiv 1$. For $p>2$, the key here is that every $p-i$ in $(p-2)!=(p-2)(p-3) \cdots(3)(2)$ has exactly one unique inverse, which is different from $p-i$. That means that we can split up this product into pairs of elements that are inverses of each other. Since each of these pairs multiplies to 1 , by the definition of the inverse, the whole product is simply $(p-2)!\equiv 1$. Note that since $p>2$, we know that p is odd, and thus there will be an even number of terms in $(p-2)(p-3) \cdots(3)(2)$. For $p=2$, the special case, simply note that $p-2=0$, and thus that $(p-2)!=0!=1$. Thus for all $p,(p-2)!\equiv 1$.

Now, since we know that $p-1 \equiv-1$ and $(p-2)!\equiv 1$, it is clear that

$$
(p-1)(p-2)!=(p-1)!\equiv-1 \cdot 1=-1
$$

Thus the claim is proved.
5. Solve each of the following for x.
i) $432 x \equiv 2(\bmod 91)$Note that $432 \equiv 68(\bmod 91)$. We first use the matrix layout algorithm to find $[68]^{-1}$:

$$
\begin{aligned}
& \left(\begin{array}{ll|l}
1 & 0 & 68 \\
0 & 1 & 91
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}}\left(\begin{array}{cc|c}
1 & 0 & 68 \\
-2 & 1 & 23
\end{array}\right) \xrightarrow{r_{1}=r_{1}-2 r_{2}} \\
& \left(\begin{array}{cc|c}
3 & -2 & 22 \\
-1 & 1 & 23
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}}\left(\begin{array}{cc|c}
3 & -2 & 22 \\
-4 & 3 & 1
\end{array}\right) \xrightarrow{r_{1}=r_{1}-22 r_{2}} \\
& \left(\begin{array}{cc|c}
91 & -68 & 0 \\
-\mathbf{4} & \mathbf{3} & \mathbf{1}
\end{array}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
1 & =68 \cdot(-4)+91 \cdot 3 \\
1 \bmod 91 & =(68 \cdot(-4)+91 \cdot 3) \bmod 91 \\
1 \bmod 91 & =(68 \cdot(-4)) \bmod 91+(91 \cdot 3) \bmod 91 \\
1 & \equiv 68 \cdot(-4) \quad(\bmod 91)
\end{aligned}
$$

This implies that $[68]^{-1}=[-4]$. We now verify the conditions necessary to solve the equation. If $d=\operatorname{gcd}(432,91)$, then it is true that $d=1$. It is also true that $d \mid b$, since $1 \mid 2$. We then find $[x]$ as follows:

$$
\begin{aligned}
432 x & \equiv 2 \quad(\bmod 91) \\
432^{-1} \cdot 432 x & \equiv 432^{-1} \cdot 2 \quad(\bmod 91) \\
x & \equiv(-4) \cdot 2 \quad(\bmod 91) \\
x & \equiv-8 \equiv 83 \quad(\bmod 91)
\end{aligned}
$$

Thus $[x]=[83]$.
ii) $23 x \equiv 16(\bmod 107)$We first use the matrix layout algorithm to find $[23]^{-1}$:

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 0 & 23 \\
0 & 1 & 107
\end{array}\right) \xrightarrow{r_{2}=r_{2}-4 r_{1}}\left(\begin{array}{cc|c}
1 & 0 & 23 \\
-4 & 1 & 15
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}} \\
& \left(\begin{array}{cc|c}
5 & -1 & 8 \\
-4 & 1 & 15
\end{array}\right) \xrightarrow{r_{2}=r_{2}-r_{1}}\left(\begin{array}{cc|c}
5 & -1 & 8 \\
-9 & 2 & 7
\end{array}\right) \xrightarrow{r_{1}=r_{1}-r_{2}} \\
& \left(\begin{array}{cc|c}
14 & -3 & 1 \\
-9 & 2 & 7
\end{array}\right) \xrightarrow{r_{2}=r_{2}-7 r_{1}}\left(\begin{array}{cc|c}
\mathbf{1 4} & -\mathbf{3} & \mathbf{1} \\
-107 & 23 & 0
\end{array}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
1 & =23 \cdot 14+107 \cdot(-3) \\
1 \bmod 107 & =(23 \cdot 14+107 \cdot(-3) \bmod 107 \\
1 \bmod 107 & =(23 \cdot 14) \bmod 107+(107 \cdot(-3)) \bmod 107 \\
1 & \equiv 23 \cdot 14 \quad(\bmod 107)
\end{aligned}
$$

This implies that $[23]^{-1}=[14]$. We now verify the conditions necessary to solve the equation. If $d=\operatorname{gcd}(23,107)$, then it is true that $d=1$. It is also true that $d \mid b$, since $1 \mid 16$. We then find $[x]$ as follows:

$$
\begin{aligned}
23 x & \equiv 16 \quad(\bmod 107) \\
23^{-1} \cdot 23 x & \equiv 432^{-1} \cdot 16 \quad(\bmod 107) \\
x & \equiv 14 \cdot 16 \quad(\bmod 107) \\
x & \equiv 224 \equiv 10 \quad(\bmod 107)
\end{aligned}
$$

Thus $[x]=[10]$.

