
CS280 Homework 6 Solution Set

14.A From Textbook 3.3 6ac

6a an = 4n − 2
∀n ∈ N an+1 − an = 4(n + 1) − 2 − (4n − 2) = 4

−→
{

a1 = 2
an+1 = an + 4

6c bn = n(n + 1)
∀n ∈ N bn+1 − bn = (n + 1)(n + 2) − n(n + 1) = 2(n + 1)

−→
{

b1 = 2
bn+1 = bn + 2(n + 1)

There are many other solutions, for example

b1 = 2
b2 = 6
bn+1 = 2(bn + 1) − bn−1

14.B From Textbook 3.3 10

We have

f0 = 0
f1 = 1
fn+1 = fn + fn−1

and we are looking for Sn = f 2
1 + f 2

2 + f 2
3 + · · ·+ f 2

n =
n∑

i=1

f 2
i

The formula for Sn = fnfn+1 is true for n = 1.
Assume Sn = fnfn+1 is true for a given n, then

Sn+1 =
n+1∑
i=1

f 2
i

=

n∑
i=1

f 2
i + f 2

n+1

= Sn + f 2
n+1 (by definition of Sn)

= fnfn+1 + f 2
n+1 (Induction hypothesis)

= fn+1(fn + fn+1)

= fn+1fn+2 (by definition of fn+2)

The formula is true for n+1. Therefore we have proven by induction that
∑n

i=1 f 2
i = fnfn+1

holds for every positive integer n.

14.C From Textbook 3.3 30

A palindrome is a string that reads the same backward as it does forward.
Let S be the set of the bit strings which are palindromes.

S:

λ ∈ S (the empty string)
0 ∈ S and 1 ∈ S
if x ∈ S then 0x0 ∈ S and 1x1 ∈ S.

It is up to you to decide if the empty string λ is in S or not. If it is not, you have to add the
strings 00 and 11 in S.

15.A From Textbook 3.4 2

procedure sum(n:nonnegative integer)

if n=0 then sum(0) := 0
else sum(n) := n + sum(n-1)

15.B From Textbook 3.4 8

For the purposes of our algorithm, we will treat a list as an indexed set (i.e. a set where each
element has a corresponding index).
The procedure will return a pair: the first component of the pair is a mode of the list, the
second is the number of times that mode occurs.
If the list is one element, we return the pair consisting of that one element and 1.
Otherwise, we remove the last element an from the list (as well as any other occurrences of
that same element in the list). If an was the only element in the list, we return it and the
length of the list.
We recurse on the list with the an removed (and all occurrences); if the answer m has a
higher number of occurrences than the number of occurrences of an, we return m as the
mode, otherwise we return the last element.

procedure mode(L = {a1, . . . , an} : list of integers)

L′ := L − {ai|ai = an}
k := |L − L′|
if k = n then

return (an, n)
else

(m, t) := mode(L′)
if t > k then return (m, t)
else return (an, k)

16.A From Textbook 3.5 2

(True ∧ (x < 0)) {x := 0} (x ≥ 0)
(True ∧ ¬(x < 0)) → (x ≥ 0)

(True) {if x < 0 then x := 0} (x ≥ 0)

Termination is obvious. The first premise trivially holds. The second is shown by distributing
the negation over the ordering relation: ¬(x < 0) ⇐⇒ (x ≥ 0).

16.B From Textbook 3.5 4

I presume there is a typo in the text. We’ll end up with

q ≡ (
(x < y) ∧ (min = x)

) ∨ (
(x ≥ y) ∧ (min = y)

)
at the end of the rule for if then else. The text asks for

q′ ≡ (
(x ≤ y) ∧ (min = x)

) ∨ (
(x > y) ∧ (min = y)

)
Nevertheless, those two are equivalent: if x 6= y then they are equivalent. If x = y, then max
is set to y instead of x, but x = y so it doesn’t make any difference.

Proof:
(True ∧ (x < y)) {min := x} (

(x < y) ∧ (min = x)
)
.

This is obvious.

(True ∧ ¬(x < y)) {min := y} (
(x ≥ y) ∧ (min = y)

)
.

This is true also because ¬(x < y) ⇐⇒ (x ≥ y).
We have

A ≡ (
(x < y) ∧ (min = x)

) → (
(x < y) ∧ (min = x)

) ∨ (
(x ≥ y) ∧ (min = y)

) ≡ q
B ≡ (

(x ≥ y) ∧ (min = y)
) → (

(x ≥ y) ∧ (min = y)
) ∨ (

(x < y) ∧ (min = x)
) ≡ q

Therefore the program is correct (does terminate), the final assertions q and q′ being equiv-
alent.

16.C From Textbook 3.5 12

In the following, the symbol I is shorthand for . . .

a > 0 and d > 0 and a, d, q, r are integers

We begin our fairly formal proof by showing that I and a = dq + r and r >= 0 is an
invariant of the loop. [(A)–(F) below are Hoare triples P{S}Q, written vertically.]

(A)

I and a = dq + r and r >= 0 and r >= d

{ r := r - d }

I and a = d(q + 1) + r and r >= 0

[initially, a = dq + r = dq + d + r - d = d(q + 1) + (r - d)

and r - d >= 0, so assigning r - d to r leaves us with

a = d(q + 1) + r and r >= 0]

(B)

I and a = d(q + 1) + r and r >= 0

{ q := q + 1 }

I and a = dq + r and r >= 0

(C)

I and a = dq + r and r >= 0 and r >= d

{ r := r - d; q := q + 1 }

I and a = dq + r and r >= 0

[by the inference rule for ;, using the Hoare triples (A) and (B) above.

note that the initial and final assertions do match correctly, e.g., the

initial assertion of (B) coincides with the final assertion of (A), etc.]

We now use (C) to prove that the core of the algorithm is partially correct.

(D)

I and a = dq + r and r >= 0

{while r >= d

begin

r := r - d;

q := q + 1

end}

I and a = dq + r and r >= 0 and r < d

[by the inference rule for while, using (C), i.e., using the fact that

I and a = dq + r and r >= 0 is a loop invariant]

Finally, we show that the initialization r := a; q := 0 does indeed establish the precon-
dition that we assumed above; from there we easily derive the partial correctness of the
algorithm as a whole.

(E)

a > 0 and d > 0 and a, d are integers

{r := a; q := 0}

I and a = dq + r and r >= 0

[a = dq + r holds simply because dq = 0 and r = a]

(F)

a > 0 and d > 0 and a, d are integers

{r := a; q := 0;

while r >= d

begin

r := r - d;

q := q + 1

end}

I and a = dq + r and r >= 0 and r < d

[by the inference rule for ;, using (E) and (D)]

