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11A. Section 2.6, 2b

A + B =
[ −1 0 5 6
−4 −3 5 −2

]
+

[ −3 9 −3 4
0 −2 −1 2

]
=

[ −4 9 2 10
−4 −5 4 0

]

11B. Section 2.6, 4c

AB =


 0 −1

7 2
−4 −3


[

4 −1 2 3 0
−2 0 3 4 1

]

=


 (0 · 4 + −1 · −2) (0 · −1 + −1 · 0) (0 · 2 + −1 · 3) (0 · 3 + −1 · 4) (0 · 0 + −1 · 1)

(7 · 4 + 2 · −2) (7 · −1 + 2 · 0) (7 · 2 + 2 · 3) (7 · 3 + 2 · 4) (7 · 0 + 2 · 1)
(−4 · 4 + −3 · −2) (−4 · −1 + −3 · 0) (−4 · 2 + −3 · 3) (−4 · 3 + −3 · 4) (−4 · 0 + −3 · 1)




=


 2 0 −3 −4 −1

24 −7 20 29 2
−10 4 −17 −24 −3




11C. Section 2.6, 24a
A1 is 20 × 50, A2 is 50 × 10, A3 is 10 × 40.
We examine the two possible cases. We will count only multiplications as they are more significant

operations than addition (and this is the way the book makes these quantitative comparisons).
(A1A2)A3: Using the standard algorithm, 20 · 50 · 10 = 10000 multiplications are done for computing

(A1A2). Since this resulting matrix is 20 × 10, the multiplication of it with A3 uses 20 × 10 × 40 = 8000
multiplications. Hence 18000 multiplications in all.
A1(A2A3): 50 · 10 · 40 = 20000 multiplications are done for computing (A2A3). Thus computing the

product in this case is more expensive than the first case.

11D. Section 2.6, 28

(a) A ∨ B =
[

1 1
1 1

]
.

(b) A ∧ B =
[

0 1
0 0

]
.

(c) A � B =
[

(1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0)
(0 ∧ 0) ∨ (1 ∧ 1) (0 ∧ 1) ∨ (1 ∧ 0)

]
=

[
1 1
1 0

]
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12A. Section 3.1, 2ade
(a) Simplification is used here.
(d) Addition is used here.
(e) Hypothetical syllogism used.

12B. Section 3.1, 10acd
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(a) Let P (x) = “x owns a red convertible”, and Q(x) = “x has gotten a speeding ticket”.
Then we are asserting P (Linda), ∀xP (x) → Q(x), where the domain of x is the set of students in the

class. From these we may assert P (Linda) → Q(Linda) by universal instantiation, then Q(Linda) by
modus ponens, then ∃xQ(x) by existential generalization.

(c) Let P (x) = “x is produced by John Sayles”, Q(x) = “x is wonderful”, and R(x) = “x is about coal
miners”.
Then our assertions are that ∀xP (x) → Q(x), and ∃xP (x) ∧ R(x), where the domain of x is the set

of movies. Then by existential instantiation, P (c) ∧ R(c) for some movie c. By simplification, P (c). By
universal instantiation, P (c) → Q(c). By modus tollens, Q(c). Since P (c), R(c) and Q(c), by conjunction
P (c) ∧ R(c) ∧ Q(c). Finally by existential generalization, ∃xP (x) ∧ R(x) ∧ Q(x).

(d) Let P (x) = “x has been to France”, Q(x) = “x has visited the Louvre”.
Then we assert the propositions p1 = “∃xP (x)”, and q = “∀yP (y) → Q(y)”, where x is quantified over

the domain of students in the class, and y is quantified over the domain of all people. Since the set of
students is a subset of the set of people, we are implicitly assuming that ∀xP (x) → Q(x) is true as well.
By existential instantiation on p1, P (c) for some student c. By universal instantiation on q, P (c) →

Q(c), since the student c is in the domain of people. Therefore by modus ponens, Q(c). By existential
generalization, ∃xQ(x).

12C. Section 3.1, 12
The flaw is in the step “n2 6= 3k for some integer k implies n 6= 3l for some integer l.” The reasoning

is circular since this statement is equivalent to what we are trying to prove, and no justification for this
statement is provided.

12D. Section 3.1, 26
Claim: There is an integer n such that 2n + 1 is not prime.
Consider n = 5, so 25 + 1 = 33. Clearly, 33 = 11 · 3, so the claim is true for n = 5.
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13A. Section 3.2, 2
The sum of the first n even positive integers can be expressed using the following formal notation:∑n

k=1 2k. [By convention, the “empty sum”
∑0

k=1 2k is 0.]
Formally then, our claim is: P (n) holds for all natural numbers n, where P (n) is the statement∑n

k=1 2k = n(n + 1).
Proof by induction on n, with P (n) as the induction hypothesis. Base case is P (0). The sum is 0 and

0 · (0 + 1) = 0.
Induction step. Assume P (n) is true. In the case of P (n + 1):∑n+1

k=1 2k =
∑n

k=1 2k + 2(n + 1)
= n(n + 1) + 2(n + 1) by induction hypothesis
= (n + 1)(n + 2). By induction, P (n) holds for all natural numbers n.

�

13B. Section 3.2, 14
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Claim: For any integer n > 1, n! < nn.
Proof. By induction on n. [The induction hypothesis is n! < nn.] Base case is n = 2; in this case
2 = 2! < 22 = 4.
Induction step: Assume the claim is true for n. Then (n + 1)! = (n + 1)n! < (n + 1)nn by induction

hypothesis. Furthermore, (n + 1)nn < (n + 1)(n + 1)n = (n + 1)n+1, since n > 1. The claim holds for
n + 1, therefore by induction the claim holds in general.

�

13C. Section 3.2, 20
Claim: For any integer n ≥ 0, 3 divides n3 + 2n.
Proof. By induction on n. [The induction hypothesis is 3 divides n3 + 2n.] Base case is when n = 0,
and 3 divides 03 + 2 · 0 = 0 trivially.
Induction step: Assume claim is true for n. We must check to see if 3 divides (n + 1)3 + 2(n + 1).
(n + 1)3 + 2(n + 1) = (n3 + 2n) + 3n2 + 3n + 3. By induction hypothesis, there exists a k such that

3k = n3 + 2n. Therefore (n + 1)3 + 2(n + 1) = 3k + 3n2 + 3n + 3 = 3(k + n2 + n + 1), and 3 divides
(n + 1)3 + 2(n + 1). So the claim holds for n + 1.

�

13D. Section 3.2, 48
The high-level structure of the proof is legitimate, formally speaking. (Recall the second principle of

mathematical induction.) The low-level reasoning in the body of the inductive step is where the logical
flaw lies.
Specifically, he (tacitly) infers the equation an−1 = 1 from the hypothesis ∀k[0 ≤ k ≤ n → ak = 1], a

step that is valid only if 0 ≤ n − 1 ≤ n. Although the n − 1 ≤ n part of that implicit assumption can
easily be justified, the 0 ≤ n − 1 part is unwarranted. Indeed, when n = 0, i.e., when we’re “proving the
P (1) case,” the quantity n − 1 is negative.
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