8.A From Textbook 2.3 8ef

8ef 107 and 113 are primes. You only need to test the prime numbers up to $\lfloor \sqrt{n} \rfloor$. Since one can see that those numbers are not divisible by 2, 3, 5 nor 11, and that $70+35=15\times 7=105$, those numbers are prime (and you don't need a calculator to find it out).

8.B From Textbook 2.3 10ef

10ef $289 = 17^2$ and 899 = 29.31 One can easily see that 2, 3, 5 and 11 do not divide those numbers. For 7: 280 is 7.4.10, and 910 is 700 + 210 and 7 does not divide 9 nor -11. You just need to try 13 and above.

8.C From Textbook 2.3 28ab

28a
$$-17 \mod 2 = 1$$

28b 144 mod
$$7 = 140 + 4 \mod 7 = 4$$

8.D From Textbook 2.3 46c

46c EAT DIM SUM

9.A From Textbook 2.4 2e

$$\begin{array}{lll} \textbf{2e} & \gcd(1529, 14038) & = \gcd(277, 1529 \mod 277) & = \gcd(133, 11) \\ & = \gcd(1529, 14038 \mod 1529) & = \gcd(277, 144) & = \gcd(11, 1) \\ & = \gcd(1529, 277) & = \gcd(144, 133) & = 1 \end{array}$$

9.B From Textbook 2.4 8ac

8a
$$11011_2 = 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 = 27$$

8c $1110111110_2 = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 1 \cdot 2^5 + 0 \cdot 2^6 + 1 \cdot 2^7 + 1 \cdot 2^8 + 1 \cdot 9^4$
or (lazy way) $= 10000000000_2 - 1_2 - 1000000_2 - 1_2$
 $= 2^{10} - 2^0 - 2^6 - 1$
 $= 1024 - 1 - 64 - 1 = 958$

9.C From Textbook 2.4 36

10.A From Textbook 2.5 2f

2f Note:
$$124 = 4.31$$
, $323 = 17.19$ and $gcd(124, 323) = 1$
 $323 = 2 \cdot 124 + 75$ $124 = 1 \cdot 75 + 49$
 $75 = 1 \cdot 49 + 26$ $49 = 1 \cdot 26 + 23$
 $26 = 1 \cdot 23 + 3$ $23 = 7 \cdot 3 + 2$

$$3 = 1 \cdot 2 + 1$$

$$1 = 3 - 2 = 3 - (23 - 7 \cdot 3)$$

$$= (1 + 7) \cdot (26 - 1 \cdot 23) - 23$$

$$= (1 + 7) \cdot 26 + [(1 + 7) \cdot -1 - 1] \cdot 23$$

$$= (1 + 7) \cdot 26 - (1 + 7 + 1)(49 - 1 \cdot 26)$$

$$= (1 + 7 + (1 + 7 + 1)) \cdot (75 - 1 \cdot 49) - (1 + 7 + 1) \cdot 49$$

$$= 17 \cdot 75 - (17 + 9) \cdot (124 - 1 \cdot 75)$$

$$= (17 + 26) \cdot (323 - 2 \cdot 124) - 26 \cdot 124$$

$$= 43 \cdot 323 - (2 \cdot 43 + 26) \cdot 124$$

 $\gcd(124, 323) = 43 \cdot 323 - 112 \cdot 124 = 1$

10.B From Textbook 2.5 24ab

24a $3^4 \equiv 1 \pmod{5}, \ 3^6 \equiv 1 \pmod{7}, \ 3^{10} \equiv 1 \pmod{11}$ $3^{302} \mod 5 = 3^{300} \cdot 3^2 \mod 5 = (3^4)^{75} \cdot 9 \mod 5 = 9 \mod 5 = 4$ $3^{302} \mod 7 = 3^{300} \cdot 3^2 \mod 7 = (3^6)^{50} \cdot 9 \mod 7 = 9 \mod 7 = 2$

24b One can see that 9 is solution: $9 \equiv 3^{302} \pmod{5}$, $9 \equiv 3^{302} \pmod{7}$ and $9 \equiv 3^{302} \pmod{11}$. $x \equiv 3^{302} \pmod{5 \cdot 7 \cdot 11}$ has a unique solution modulus 385, which has to verify the three previous relations. Those three have a unique solution modulus 385, (which is 9) due to the Chinese Remainder Theorem. Therefore, 9 is solution of $x \equiv 3^{302} \pmod{5 \cdot 7 \cdot 11}$. If one is not convinced, there exists integers λ_1 , λ_2 , λ_3 such that $3^{302} - 9 = 5 \cdot \lambda_1 = 7 \cdot \lambda_2 = 11 \cdot \lambda_3 = \lambda$. Because 5,7 and 11 are relatively primes, $385 = 5 \cdot 7 \cdot 11 \mid \lambda$ and $3^{302} \mod{385} = 9 + \lambda \mod{385} = 9$.

 $\mod 11 = 3^{300} \cdot 3^2 \mod 11 = (3^{10})^{30} \cdot 9 \mod 11 = 9 \mod 11 = 9$

If not, one can construct $x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$ with $a_1 = 4$, $a_2 = 2$, $a_3 = 9$, $M_1 = 7 \cdot 11 = 77$, $M_2 = 5 \cdot 11 = 55$, $M_3 = 5 \cdot 7 = 35$, and y_k such that $M_k y_k \equiv 1 \pmod{m_k}$. Be careful not to consider another formula for y_k . The only simplification you can do is the following: $(M_k \mod m_k)y_k \equiv 1 \pmod{m_k}$

For y_1 : 77 mod 5 = 2, $2 \cdot 3 = 6 \equiv 1 \pmod{5}$ and $y_1 = 3$ For y_2 : 55 mod 7 = 6, $6 \cdot 6 = 36 \equiv 1 \pmod{7}$ and $y_2 = 6$ For y_3 : 35 mod 11 = 2, $2 \cdot 6 = 12 \equiv 1 \pmod{11}$ and $y_3 = 6$ $x = 4 \cdot 77 \cdot 3 + 2 \cdot 55 \cdot 6 + 9 \cdot 35 \cdot 6 = 924 + 660 + 1890 = 3474 \equiv 9 \pmod{385}$

10.C From Textbook 2.5 26di

26d $a \mod 4 = 2, a \mod 7 = 1$ **26i** $a \mod 4 = 3, a \mod 7 = 6$ a = 4k + 2 = 7l + 1 = 22 a = 4k - 1 = 7l - 1 = 27 (take k = 5 and l = 3) (take k = 7 and l = 4)