
CS280 Homework 3 Solution Set

1.A Handout 5

A. Section 1.7
2(a) a8 = 28−1 = 27 = 128.
(b) a8 = 7.
(c) a8 = 1 + (−1)8 = 1 + 1 = 2.
(d) a8 = −(−2)8 = −256.

10 (a) a0 = 3, an = (2n + 1) + an−1 will produce the sequence. Also, an = n2 + 2 will work, if we begin
the sequence with a1.
(c) an = (n + 1) written in binary, with no leading zeroes. (Note you are only required to give a rule,

and not necessarily a formula.) If we start with a1, then clearly an = n.
(f) a0 = 1, an = (2n + 1) · an−1 works, or an = (2n + 1)!/(2nn!), if we begin the sequence with a1.

16 (b)
∑8

j=0(3
j − 2j) =

∑8
j=0 3j − ∑8

j=0 2j

= (38+1 − 1)/2 − (28+1 − 1)/1 (rule for geometric series)
= 9841 − 511 = 9330.

18 (c)
∑3

i=1

∑2
j=0 j =

∑3
i=1(0 + 1 + 2) = 3 · 3 = 9.

(d)
∑2

i=0

∑3
j=0 i2 · j3 =

∑2
i=0 i2(

∑3
j=0 j3)

=
∑2

i=0 i2(32(3+1)2

4) (Table 2, p76)
=

∑2
i=0 i2 · 36 = 36

∑2
i=0 i2

= 36 · 2(2+1)(2·2+1)
6 = 36 · 5 = 180.

B.
The sum of all odd numbers from 1 to 99 is: the sum of 1 to 99, subtracting the sum of even numbers

from 2 to 98.∑99
k=1 k−∑49

k=1 2k =
∑99

k=1 k−2
∑49

k=1 k = 99·100
2 −(49·50) = 99·50−49·25 = 4950−2450 = 2500 = 502.

So the sum is a perfect square.
(Of course, there are other ways to show this as well...)

1.B Handout 6

A. Section 1.8

2. (a) Let C = 18, k = 11. Then for x > k, f(x) = 17x+11 = 17x+k < 17x+x = (17+1)x = Cx ≤ Cx2.
(b) Let C = 2, k = 1000. Then for x > k, f(x) = x2 + 1000 = x2 + k < x2 + x < x2 + x2 = C · x2.
(c) We assume the log is of base 2. Let C = 1, k = 1. Then for any x > k, log2 x < x. (We won’t prove

this here.) Therefore x · log2 x < C · x2.
(d) f(x) = x4/2 is not O(x2). For any C, k > 0 (integers), let x = k · C · 2. Then x > k, and

x4/2 = x2 · (x2/2) = x2 · (k · C · 2)2/2 > 2C2/2 · x2 ≥ C · x2.
(e) f(x) = 2x is not O(x2). Suppose it is. Then 2x is O(22 log x). Since log x is not O(x), as is referenced

in (c), we have that 2 log x is not O(x), which gives us the result.

1

(f) f(x) = dxe · bxc is O(x2). Let C = 2, k = 1. Then for any x > k, dxe · bxc ≤ x · dxe < x · 2x = Cx2.
8a.
f(x) is O(x4). It is not O(x3) since one of its terms, x3 log x, is asymptotically larger than x3.

8b.
f(x) is O(x5). The polylogarithmic factor (i.e. (log x)4) is O(x), so it can be ignored.

20a.
f(x) is O(x3 log x). This term is the dominant one when the terms of the function are expanded.

20b.
f(x) is O(2n · 3n) = O(6n). This is clearly the largest term when the terms of function are expanded.

28a.
Let C1 = 1, C2 = 2, k = 2. Then for any x > k > 0,
C1 · 3x2 ≤ 3x2 + x + 1 ≤ 3x2 + x2 = 4x2 ≤ 6x2 = C2 · 3x2.

In the preceding exercises, if you have a &1 marked on your sheet, it means you did not prove some
result you were supposed to prove.
B.

Claim: 2n = O(n!).
Proof. Let f(x) = 2x, g(x) = x!, C = 1, and k = 3. Given x, if we assume x > 3, then
|f(x)| = |2x| = 2x = 2 · 2 · · · ·x · · · · 2 ≤ x · (x − 1) · · · · · 2 = x! = C · x! = C · g(x)
where · · ·x · · · means that the total quantity is iterated x times.
On the left hand side of the ≤, 2 is multiplied x times. On the right hand side, x − 1 numbers greater

than 2 are multiplied, and 2 is multiplied with that. So for each 2 in the product on the left hand side,
there is a corresponding number in the right hand side product which is ≥ 2.

�

Claim: n! is not O(2n).
Proof. Here is one short proof; there are of course many others. Given C, k > 0, (C and k integers),
let x = k · 2C + 3. Clearly, x > k. We must show that |x!| = x! > C · 2x.
x! = (k · 2C + 3)! = (k · 2C + 3)(k · 2C + 2)!
≥ (k · 2C + 3) · 2k·2C+2 (by the previous problem, and k · 2C + 2 > 3)
> C · 21 · 2k·2C+2

= C · 2x.
�

1.C Handout 7

A. Section 2.1
24
We allow an “output” command in which the algorithm can output part of the final answer at that

point in the program.
procedure modefind(a1, . . . , an: nondecreasing integers)

2

ints := 0
{ compute matrices containing each integer in the sequence and a corresponding count of how many

times the integer occurs }
for i := 1 to n
int[i] := ∞ (∞ = some unique value different from all integers)
count[i] := 0

for i := 1 to n
flag := >
highcount := 0;
for j := 1 to ints
if ai = int[j] then count[i] := count[i] + 1; flag := ⊥
if count[j] > highcount then highcount := count[j]

if flag then ints := ints + 1; int[ints] := ai; count[ints] := 1
{ output any integer with a count equal to the last computed highcount; these are the modes }
for j := 1 to ints
if count[j] = highcount then output int[j]

B. Section 2.2
2
procedure sortfour(a1, . . . , an: elements of a list with a linear order)
S := {a1, a2, a3, a4}
for i = 1 to 4
{ recall that min(S) = the minimum element in S }
Ai := min(S)
S := S − {Ai}

{ the sequence A1, A2, A3, A4 is sorted in increasing order }

The key observation is that the for loop requires four iterations no matter what n is. Every step of this
algorithm is wholly independent of the input size. Counting each non-commented line as a step, 13 steps
are always taken. Thus we have O(1) time complexity.

6b
Each bitwise AND removes exactly one 1 from S, since S := S ∧ (S − 1) simply amounts to changing

the rightmost 1 to a 0 . . .

↓
1 1 0 1 1 0 0 0 0 0 S

∧ 1 1 0 1 0 1 1 1 1 1 S − 1
1 1 0 1 0 0 0 0 0 0 new S

↑
Pairing each bitwise AND with the 1 that it eliminates, we immediately see that the number of bitwise
ANDs is equal to the number of 1’s in the input string.
[To get a coarser estimate, one that refers only to the size of the input, we can note that a bit string of

length n can have at most n 1’s, so the worst case number of bitwise ANDs is clearly O(n).]

3

18
This will vary depending on what your algorithm was, obviously. The largest bottleneck in our algorithm

are the nested for loops, the outer loop ranging from 1..n, the inner loop ranging from 1..int (a quantity
which can be as large as n). Thus our running time is O(n2).

4

