CS280 Homework 2

1.A From textbook Section 1.3: 6 and 20

P(x, y) means student x has taken class y. a) $\exists x \exists y P(x,y)$

There is a student in my class who has taken a class in computer science.

b) $\exists x \forall y P(x, y)$

There is a student in my class who has taken all computer science classes.

c) $\forall x \exists y P(x, y)$

Every student in my class has taken a class in computer science.

d) $\exists y \forall x P(x, y)$

There is a computer science class every body in my class has taken.

e) $\forall y \exists x P(x,y)$

For every class in the Computer Science Departement, there is a student from my class who has taken it. Or:

In each computer science class there is or has been a student from my class.

f) $\forall x \forall y P(x, y)$

Every student in my class has taken all computer science classes.

$Q(x,y) \Leftrightarrow x+y=x-y$			
a)	Q(1,1) = False	$2 = 1 + 1 \neq 1 - 1 = 0$	
b)	Q(2,0) = True	2 - 0 = 2 + 0	
\mathbf{c})	$\forall y \ Q(1,y) = \text{False}$	for example take $y = 1$	
d)	$\exists x \ Q(x,2) = $ False	this is equivalent to $4 = 0$	
e)	$\exists x \exists y \ Q(x,y) = \text{True}$	take $x = 0$ and $y = 1$	
f)	$\forall x \exists y \ Q(x,y) = \text{True}$	take $y = 0$	
g)	$\exists y \forall x \ Q(x,y) = \text{True}$	take $y = 0$	
h)	$\forall y \exists x \ Q(x,y) = $ False	take $y = 1$	
i)	$\forall x \forall y \ Q(x,y) = $ False	take $x = 2$ and $y = 1$	

Move \neg inside 1.B

$\neg \forall x \exists y \ \left(A(x,y) \to B(x,y) \right)$	
$\exists x \neg \exists y \ \left(A(x,y) \rightarrow B(x,y) \right)$	$(\neg \forall x Z(x) \iff \exists x \neg Z(x))$
$\exists x \forall y \ \neg \big(A(x,y) \to B(x,y) \big)$	$(\neg \exists y Z(y) \Leftrightarrow \forall y \neg Z(y))$
$\exists x \forall y \neg (\neg A(x,y) \lor B(x,y))$	$(A \to B \iff \neg A \lor B)$
$\exists x \forall y \ \big(A(x,y) \ \land \ \neg B(x,y)\big)$	$(\neg (A \lor B) \Leftrightarrow \neg A \land \neg B)$

Show that $\forall x (A(x) \to B(x)) \to (\forall x A(x)) \to (\forall x B(x))$ (*) 1.C

In other words:

assuming $\forall x (A(x) \to B(x))$ (1), show $(\forall x A(x)) \to (\forall x B(x))$ (2).

- When $(\forall x A(x))$ is false, there is nothing to do, the proposition (2) holds.
- If $(\forall x A(x))$ is true, then for every x A(x) is true, from (1) we have B(x) true, so $(\forall x B(x))$ is true.

Therefore (*) holds.

The reverse doesn't hold, take A to be "x > 2" and B to be "x > 4", the universe of disclosure being \mathbb{R}

2.A From Textbook Section 1.4: 12

a) $|\emptyset| = 0$ b) $|\{\emptyset\}| = 1$ c) $|\{\emptyset, \{\emptyset\}\}| = 2$ d) $|\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}| = 3$ This is how Von Neumann constructed the set of integers \mathbb{N} from scratch.

2.B From Textbook Section 1.5: 12de, 38

12 d) $(A - C) \cap (C - B) = \emptyset$ Let's take $x \in (A - C) \cap (C - B)$

- $x \in (A C)$ so $x \in A$ and $x \notin C$
- $x \in (C B)$ so $x \in C$ and $x \notin B$

So $x \in C$ and $x \notin C$! No such x exists.

38) $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

a) $\{3, 4, 5\} \Rightarrow 0011100000$

c) $\{2, 3, 4, 7, 8, 9\} \Rightarrow 0111001110$

12 e)
$$(B - A) \cup (C - A) = (B \cup C) - A$$

 $(B - A) \cup (C - A)$
 $= \{x \mid x \in (B - A) \lor x \in (C - A)\}$
 $= \{x \mid (x \in B \land x \notin A) \lor (x \in C \land x \notin A)\}$
 $= \{x \mid (x \in B \lor x \in C) \land x \notin A\}$
 $= (B \cup C) - A$

b) $\{1, 3, 6, 10\} \Rightarrow 1010010001$

3.A From Textbook Section 1.6: 16, 44, 48

16
$$S = \{-1, 0, 2, 4, 7\}$$

a)
$$f(x) = 1$$
b) $f(x) = 2x + 1$ $f(S) = \{1\}$ $f(S) = \{-1, 1, 5, 9, 15\}$ c) $f(S) = \lceil x/5 \rceil$ d) $f(S) = \lfloor (x^2 + 1)/3 \rfloor$ $f(S) = \{0, 1, 2\}$ $f(S) = \{0, 1, 5, 16\}$

Don't forget to take the interger part, that f(S) is a set, and don't write duplicate numbers in sets.

44 The number of bytes needed to encode *n* bits is $p = \lceil \frac{n}{8} \rceil$

a) n = 4 p = 1b) n = 10 p = 2c) n = 500 p = 63d) n = 3000 p = 375

48 Graph of the function $f(n) = 1 - n^2$ from \mathbb{Z} to \mathbb{Z} . See graph on the right.

3.B From Handout

$$f(x) = x^3 - 1, \ g(x) = x + 1, \text{ the set is } \mathbb{R}.$$

$$f \circ g(x) = f(g(x)) = f(x + 1) = (x + 1)^3 - 1$$

$$f \circ g(x) = x^3 + 3x + 3x$$

Since $\sqrt[3]{(x^3 - 1) + 1} = \sqrt[3]{f(x) + 1} = x$

$$f^{-1}(x) = \sqrt[3]{x + 1}$$

