1.A From textbook Section 1.3: 6 and 20

$P(x, y)$ means student x has taken class y.
a) $\exists x \exists y P(x, y)$
d) $\exists y \forall x P(x, y)$

There is a student in my class who has taken a class in computer science.
b) $\exists x \forall y P(x, y)$

There is a student in my class who has taken all computer science classes.
c) $\forall x \exists y P(x, y)$

Every student in my class has taken a class in computer science.

There is a computer science class every body in my class has taken.
e) $\forall y \exists x P(x, y)$

For every class in the Computer Science Departement, there is a student from my class who has taken it. Or:
In each computer science class there is or has been a student from my class.
f) $\forall x \forall y P(x, y)$

Every student in my class has taken all computer science classes.
$Q(x, y) \Leftrightarrow x+y=x-y$
a) $\quad Q(1,1)=$ False $\quad 2=1+1 \neq 1-1=0$
b) $\quad Q(2,0)=$ True $\quad 2-0=2+0$
c) $\quad \forall y Q(1, y)=$ False \quad for example take $y=1$
d) $\exists x Q(x, 2)=$ False \quad this is equivalent to $4=0$
e) $\exists x \exists y Q(x, y)=$ True \quad take $x=0$ and $y=1$
f) $\forall x \exists y Q(x, y)=$ True take $y=0$
g) $\exists y \forall x Q(x, y)=$ True \quad take $y=0$
h) $\forall y \exists x Q(x, y)=$ False \quad take $y=1$
i) $\forall x \forall y Q(x, y)=$ False \quad take $x=2$ and $y=1$

1.B Move \neg inside

$$
\begin{array}{r}
\neg \forall x \exists y(A(x, y) \rightarrow B(x, y)) \\
\exists x \neg \exists y(A(x, y) \rightarrow B(x, y)) \\
\exists x \forall y \neg(A(x, y) \rightarrow B(x, y)) \\
\exists x \forall y \neg(\neg A(x, y) \vee B(x, y)) \\
\exists x \forall y(A(x, y) \wedge \neg B(x, y))
\end{array}
$$

$$
\begin{array}{r}
(\neg \forall x Z(x) \Leftrightarrow \exists x \neg Z(x)) \\
(\neg \exists y Z(y) \Leftrightarrow \forall y \neg Z(y)) \\
(A \rightarrow B \Leftrightarrow \neg A \vee B) \\
(\neg(A \vee B) \Leftrightarrow \neg A \wedge \neg B)
\end{array}
$$

1.C Show that $\forall x(A(x) \rightarrow B(x)) \rightarrow(\forall x A(x)) \rightarrow(\forall x B(x))\left(^{*}\right)$

In other words:
assuming $\forall x(A(x) \rightarrow B(x))(1)$, show $(\forall x A(x)) \rightarrow(\forall x B(x))$ (2).

- When $(\forall x A(x))$ is false, there is nothing to do, the proposition (2) holds.
- If $(\forall x A(x))$ is true, then for every $x \mathrm{~A}(\mathrm{x})$ is true, from (1) we have $\mathrm{B}(\mathrm{x})$ true, so $(\forall x B(x))$ is true.

Therefore (*) holds.
The reverse doesn't hold, take A to be " $x>2$ " and B to be " $x>4$ ", the universe of disclosure being \mathbb{R}

2.A From Textbook Section 1.4: 12

a) $|\emptyset|=0$
b) $|\{\emptyset\}|=1$
c) $|\{\emptyset,\{\emptyset\}\}|=2$
d) $|\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}|=3$

This is how Von Neumann constructed the set of integers \mathbb{N} from scratch.

2.B From Textbook Section 1.5: 12de, 38

12 d) $(A-C) \cap(C-B)=\emptyset$
Let's take $x \in(A-C) \cap(C-B)$

- $x \in(A-C)$ so $x \in A$ and $x \notin C$
- $x \in(C-B)$ so $x \in C$ and $x \notin B$

So $x \in C$ and $x \notin C!$ No such x exists.
38) $U=\{1,2,3,4,5,6,7,8,9,10\}$
a) $\{3,4,5\} \Rightarrow 0011100000$
b) $\{1,3,6,10\} \Rightarrow 1010010001$
c) $\{2,3,4,7,8,9\} \Rightarrow 0111001110$

12 e) $(B-A) \cup(C-A)=(B \cup C)-A$
$(B-A) \cup(C-A)$
$=\{x \mid x \in(B-A) \vee x \in(C-A)\}$
$=\{x \mid(x \in B \wedge x \notin A) \vee(x \in C \wedge x \notin A)\}$
$=\{x \mid(x \in B \vee x \in C) \wedge x \notin A\}$
$=(B \cup C)-A$

3.A From Textbook Section 1.6: 16, 44, 48

$16 S=\{-1,0,2,4,7\}$
a) $f(x)=1$
b) $f(x)=2 x+1$
$f(S)=\{1\}$
$f(S)=\{-1,1,5,9,15\}$
c) $f(S)=\lceil x / 5\rceil$
d) $f(S)=\left\lfloor\left(x^{2}+1\right) / 3\right\rfloor$ $f(S)=\{0,1,2\}$
$f(S)=\{0,1,5,16\}$

Don't forget to take the interger part, that $f(S)$ is a set, and don't write duplicate numbers in sets.
44 The number of bytes needed to encode n bits is $p=\left\lceil\frac{n}{8}\right\rceil$
a) $n=4 \quad p=1$
b) $n=10 \quad p=2$
c) $n=500 \quad p=63$
d) $n=3000 \quad p=375$

48 Graph of the function $f(n)=1-n^{2}$ from \mathbb{Z} to \mathbb{Z}. See graph on the right.

3.B From Handout

$f(x)=x^{3}-1, g(x)=x+1$, the set is \mathbb{R}.
$f \circ g(x)=f(g(x))=f(x+1)=(x+1)^{3}-1$
$f \circ g(x)=x^{3}+3 x+3 x$
Since $\sqrt[3]{\left(x^{3}-1\right)+1}=\sqrt[3]{f(x)+1}=x$
$f^{-1}(x)=\sqrt[3]{x+1}$

