
CS280 Homework 11 Solution Set

1.A Handout 28

28A. Rosen 6.5 - 2
(a) It’s an equivalence relation.
(b) It’s an equivalence relation.
(c) Is not transitive.
(d) Is not transitive.
(e) Is not transitive.

28B. Rosen 6.5 - 14(b)
Clearly, the matrix is symmetric (so the relation represented by it is symmetric).
There are all 1s on the diagonal, so the relation is reflexive.
Finally, the relation is not transitive. Let iRj correspond to the i, j entry of the matrix. The only
non-reflexive relations between elements are 1R3, 3R1, 2R4, 4R2. Thus, if xRy and yRz, we conclude
that either x = y, y = z (one of the two represent reflexive relations, implying xRz trivially), or x �= y �= z
and x = z (again implying xRz trivially).

28C. Rosen 6.5 - 22(b)(d)
We use the book’s notation for this one.
(b) [4]3 = {. . . , 4− 2(3), 4 − 3, 4, 4 + 3, 4 + 2(3), . . . } = {. . . ,−2, 1, 4, 7, 10, . . . }.
(d) [4]8 = {. . . , 4− 2(8), 4 − 8, 4, 4 + 8, 4 + 2(8), . . . } = {. . . ,−12,−4, 4, 12, 20, . . . }.

28D. Rosen 6.6 - 2(b)
Reflexivity is clear.
Anti-symmetry: If xRy and yRx, then x = y, since the only relation that is not of the form iRi
(corresponding to the i, i entry of the matrix) is 3R1, and we do not have 1R3.
Transitivity: is also obvious since if xRy and yRz, then either both are reflexive (implying xRz) or one
of them is 3R1 (both cannot be 3R1). If it is xRy, then yRz must be 1R1, and then xRz. If it is yRz,
then xRy must be 3R3, and then xRz.
So it’s a partial order.

28E. Rosen 6.6 - 10(a)(c)
(a) All pairs less than (2, 3): {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2)}.
(b) All pairs greater than (3, 1): {(4, 4), (4, 3), (4, 2), (4, 1), (3, 4), (3, 3), (3, 2)}.
(c) The 16-element Hasse diagram can be found on page 4.

28F. Rosen 6.6 - 24
(a) Maximal elements: l and m.
(b) Minimal elements: a, b, and c.
(c) No greatest element (two maximal elements).
(d) No least element (three minimal elements).
(e) Upper bounds of {a, b, c}: {k, l,m}.
(f) Least upper bound: k.
(g) Lower bounds of {f, g, h}: None.
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(f) No greatest lower bound.

1.B Handout 29

29A. Rosen 7.1 - 4,6,8
(4) It’s a multigraph (and not a simple graph). Since it doesn’t have any loops, we cannot claim
it is not a multigraph.
(6) This is also a multigraph (and not a simple graph).
(8) This is a directed multigraph (and not a directed graph).

29B. Rosen 7.2 - 2
Number of vertices = 5, Number of edges = 13.
Degree of a = 6, degree of b = 6, degree of c = 6, degree of d = 5, degree of e = 3. (To verify this
roughly, note that the sum of these is 26 = 2 · 13.)
There are no isolated vertices, nor are there pendant vertices.

29C. Rosen 7.2 - 18
The following are short sketches of how to prove these results. They are not meant to be rigorous. We
did not require that you prove your answers.
(a) Kn is bipartite only if n = 2. This is because for n = 1, there is only one node in the graph (so
by Rosen’s definition, it cannot be bipartite); K3 is not bipartite (see p.449), and the proof given there
works for any Kn where n ≥ 3.
(b) Cn is bipartite if and only if n is even. When n is even, we place every other node appearing on
the cycle in a set S, and the rest of the nodes in a set T . It is easy to see that when n is even, there are
no edges between nodes of S, nor are their edges between nodes of T . When n is odd, we cannot choose
“every other node” as stated above.
(c) Wn is not bipartite for any n ≥ 3. We have to place the “center node” of Wn in one of the two sets

S or T . When we remove the center node from Wn, we have Cn, and any bipartition of Cn for n ≥ 3
requires more than one node in both S and T (we take this as a fact implied by part b). But the center
node has an edge to every node in the cycle Cn, so no matter which of the sets we choose, there will be
a node in that set which has an edge to the center node.
(d) Qn is bipartite for all n ≥ 1. It is clear that this is true for n = 1 and n = 2. We now outline the
proof for n ≥ 3. Define S as the set of nodes in Qn with an even number of ones, and T as the set of
nodes with an odd number of ones. For any u, v ∈ S, (u, v) is not an edge in the graph because if both
u and v have an even number of ones but u �= v, then the two nodes must differ in at least two bits. The
same argument for any u, v ∈ T shows that (u, v) is not an edge in the graph either.

29D. Rosen 7.2 - 20
The handshaking theorem says that

∑
v∈V d(v) = 2|E|, where V is the set of vertices, d(v) is the degree

of v, and E is the set of edges. So the number of edges is

4 + 3 + 3 + 2 + 2
2

= 14/2 = 7.

A graph with this property is given below.
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29E. Rosen 7.2 - 32
One way to draw the union of these two graphs is the following:
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Hasse diagram for 28E

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)
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