1.A Handout 28

28A. Rosen 6.5-2

(a) It's an equivalence relation.
(b) It's an equivalence relation.
(c) Is not transitive.
(d) Is not transitive.
(e) Is not transitive.

28B. Rosen 6.5-14(b)

Clearly, the matrix is symmetric (so the relation represented by it is symmetric).
There are all 1 s on the diagonal, so the relation is reflexive.
Finally, the relation is not transitive. Let $i R j$ correspond to the i, j entry of the matrix. The only non-reflexive relations between elements are $1 R 3,3 R 1,2 R 4,4 R 2$. Thus, if $x R y$ and $y R z$, we conclude that either $x=y, y=z$ (one of the two represent reflexive relations, implying $x R z$ trivially), or $x \neq y \neq z$ and $x=z$ (again implying $x R z$ trivially).

28C. Rosen 6.5-22(b)(d)
We use the book's notation for this one.
(b) $[4]_{3}=\{\ldots, 4-2(3), 4-3,4,4+3,4+2(3), \ldots\}=\{\ldots,-2,1,4,7,10, \ldots\}$.
(d) $[4]_{8}=\{\ldots, 4-2(8), 4-8,4,4+8,4+2(8), \ldots\}=\{\ldots,-12,-4,4,12,20, \ldots\}$.

28D. Rosen 6.6-2(b)

Reflexivity is clear.
Anti-symmetry: If $x R y$ and $y R x$, then $x=y$, since the only relation that is not of the form $i R i$ (corresponding to the i, i entry of the matrix) is $3 R 1$, and we do not have $1 R 3$.
Transitivity: is also obvious since if $x R y$ and $y R z$, then either both are reflexive (implying $x R z$) or one of them is $3 R 1$ (both cannot be $3 R 1$). If it is $x R y$, then $y R z$ must be $1 R 1$, and then $x R z$. If it is $y R z$, then $x R y$ must be $3 R 3$, and then $x R z$.
So it's a partial order.
28E. Rosen 6.6-10(a)(c)
(a) All pairs less than $(2,3):\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2)\}$.
(b) All pairs greater than $(3,1):\{(4,4),(4,3),(4,2),(4,1),(3,4),(3,3),(3,2)\}$.
(c) The 16 -element Hasse diagram can be found on page 4.

28F. Rosen 6.6-24

(a) Maximal elements: l and m.
(b) Minimal elements: a, b, and c.
(c) No greatest element (two maximal elements).
(d) No least element (three minimal elements).
(e) Upper bounds of $\{a, b, c\}:\{k, l, m\}$.
(f) Least upper bound: k.
(g) Lower bounds of $\{f, g, h\}$: None.
(f) No greatest lower bound.

1.B Handout 29

29A. Rosen 7.1-4,6,8
(4) It's a multigraph (and not a simple graph). Since it doesn't have any loops, we cannot claim it is not a multigraph.
(6) This is also a multigraph (and not a simple graph).
(8) This is a directed multigraph (and not a directed graph).

29B. Rosen 7.2-2

Number of vertices $=5$, Number of edges $=13$.
Degree of $a=6$, degree of $b=6$, degree of $c=6$, degree of $d=5$, degree of $e=3$. (To verify this roughly, note that the sum of these is $26=2 \cdot 13$.)
There are no isolated vertices, nor are there pendant vertices.

29C. Rosen 7.2-18

The following are short sketches of how to prove these results. They are not meant to be rigorous. We did not require that you prove your answers.
(a) K_{n} is bipartite only if $n=2$. This is because for $n=1$, there is only one node in the graph (so by Rosen's definition, it cannot be bipartite); K_{3} is not bipartite (see p.449), and the proof given there works for any K_{n} where $n \geq 3$.
(b) C_{n} is bipartite if and only if n is even. When n is even, we place every other node appearing on the cycle in a set S, and the rest of the nodes in a set T. It is easy to see that when n is even, there are no edges between nodes of S, nor are their edges between nodes of T. When n is odd, we cannot choose "every other node" as stated above.
(c) W_{n} is not bipartite for any $n \geq 3$. We have to place the "center node" of W_{n} in one of the two sets S or T. When we remove the center node from W_{n}, we have C_{n}, and any bipartition of C_{n} for $n \geq 3$ requires more than one node in both S and T (we take this as a fact implied by part b). But the center node has an edge to every node in the cycle C_{n}, so no matter which of the sets we choose, there will be a node in that set which has an edge to the center node.
(d) Q_{n} is bipartite for all $n \geq 1$. It is clear that this is true for $n=1$ and $n=2$. We now outline the proof for $n \geq 3$. Define S as the set of nodes in Q_{n} with an even number of ones, and T as the set of nodes with an odd number of ones. For any $u, v \in S,(u, v)$ is not an edge in the graph because if both u and v have an even number of ones but $u \neq v$, then the two nodes must differ in at least two bits. The same argument for any $u, v \in T$ shows that (u, v) is not an edge in the graph either.

29D. Rosen 7.2-20

The handshaking theorem says that $\sum_{v \in V} d(v)=2|E|$, where V is the set of vertices, $d(v)$ is the degree of v, and E is the set of edges. So the number of edges is

$$
\frac{4+3+3+2+2}{2}=14 / 2=7 .
$$

A graph with this property is given below.

29E. Rosen 7.2-32
One way to draw the union of these two graphs is the following:

Hasse diagram for 28E

```
0(4,4)
(4,3)
(4,2)
(4,1)
(3,4)
(3,3)
(3,2)
(3,1)
(2,4)
(2,3)
(2,2)
(2,1)
(1,4)
(1,3)
(1,2)
(1,1)
```

