
CS280, Spring 2001 Handout 9
February 9, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.4

2. The main message of this lecture:

The first practical algorithms come from mathematics,
more precisely, from the arithmetic: the Euclidean al-
gorithm of finding g.c.d., addition and multiplication of
integers in different bases.

A surprisingly efficient (log complexity) computational procedure of finding the greatest com-
mon divisor is provided by the classical Euclidean algorithm. We will give a description of this
algorithm along with the tracing of an example gcd(45, 111) =?

1. Divide the larger integer by the smaller: 111 = 2 · 45 + 21
2. If the remainder is 0 then the divisor is the desired gcd
3. Otherwise replace the larger by the remainder and go to 1.: (45, 111) 7→ (21, 45)
45 = 21 · 2 + 3, therefore (21, 45) 7→ (3, 21), 21 = 7 · 3 + 0, thus 3 = gcd(45, 111).

The correctness of the Euclidean algorithm is based on the following lemma.

Lemma 9.1. a = bq + r ⇒ gcd(a, b) = gcd(r, b)
Proof. In fact the pairs (a, b) and (r, b) have exactly the same common divisors (therefore
their greatest common divisors coincide). Indeed, a = bq + r yields r = a − bq.

d|a ∧ d|b ⇒ d|bq ∧ d|a − bq = r ⇒ d|r ∧ d|b
d|r ∧ d|b ⇒ d|bq ∧ d|bq + r = a ⇒ d|b ∧ d|a

Theorem 9.2. The Euclidean algorithm converges for any a ≥ b > o and computes gcd(a, b).
Proof. Let a ≥ b > o. Put r0 = a, r1 = b. Consider the steps of the algorithm:

r0 = r1 · q1 + r2, 0 ≤ r2 < r1

r1 = r2 · q2 + r3, 0 ≤ r3 < r2

..............................
rn−2 = rn−1 · qn−1 + rn, 0 ≤ rn < rn−1

rn−1 = rn · qn.

The algorithm terminates since the sequence of remainders r2, r3, r4, . . . is strictly descending
yet nonnegative. therefore, it reaches 0 after some finite number of steps. Then gcd(a, b) =
gcd(r0, r1) = gcd(r1, r2) = . . . gcd(rn−1, rn) = rn.

Example 9.2. We all know that integers can be represented in decimal notations, e.g. 5678 =
5 · 1000 + 6 · 100 + 7 · 10 + 8 = 5 · 103 + 6 · 102 + 7 · 101 + 8 · 100, or in binary, e.g. (1101)2 =
1 · 8 + 1 · 4 + 0 · 2 + 1 · 1 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 13. There is a cute mathematical
theory that allows us to produce base b expansions of integers for any b > 1.

Theorem 9.3. Let b > 1. Then each positive integer n can be uniquely represented in the form
n = akb

k + ak−1b
k + . . . + aib + a0, where k, ak, ak−1, . . . , a1, a0 ≥ 0 and ai < b (i = 0, 1, . . . , k).

Proof. To find an expansion of n one has to keep dividing n and then the quotients by the
base b. We show both the general scheme, and an example of finding the base 7 expansion of
n = 12345.

Division General formula for n Example division Representation of n = 12345
n = bq0 + a0 n = bq0 + a0 12345 = 7 · 1763 + 4 12345 = 7 · 1763 + 4
q0 = bq1 + a1 = b(bq1 + a1) + a0 1763 = 7 · 251 + 6 = 7(7 · 251 + 6) + 4

= b2q1 + ba1 + a0 = 72 · 251 + 7 · 6 + 4
q1 = bq2 + a2 = b2(bq2 + a2) + ba1 + a0 251 = 7 · 35 + 6 = 72(7 · 35 + 6) + 7 · 6 + 4

= b3q2 + b2a2 + ba1 + a0 = 73 · 35 + 726 + 7 · 6 + 4
....................... 35 = 7 · 5 + 0 = 73(7 · 5 + 0) + 72 · 6 + 7 · 6 + 4
....................... = bkqk−1 + . . . ba1 + a0 = 74 · 5 + 73 · 0 + 72 · 6 + 7 · 6 + 4
qk−1 = b · 0 + ak = bkak + . . . + ba1 + a0 = 74 · 5 + 73 · 0 + 72 · 6 + 7 · 6 + 4

The algorithm terminates when a quotient qk = 0 is reached. The resulting b-expansion on
n = (akak−1 . . . a1a0)b (in the sample case 12345 = (506764)7). The algorithm above converges
since n > q0 > q1 > . . . and every strictly descending sequence of nonnegative integers is finite.
For the proof of the uniqueness of the b-base expansion of n see the slides.

Example: Hexadecimal expansion – base 16. Digits: 0, 1, 2, . . . , 9, A,B,C,D,E, F , where
A = 10, B = 11, . . . F = 15. (1A2B3C)16 = 1·165+10·164+2·163+11·162+3·16+12 = 1715004.

Binary addition, by example of a = 10110 and b = 11011.
carry: 1 1 1 1

a : 1 0 1 1 0
b : 1 1 0 1 1
s : 1 1 0 0 0 1

The general formulas for computing the bits in the sum and the carry are: si+1 = ai + bi + ci

(mod 2) and ci+1 = b(ai + bi + ci)/2c. The complexity of the addition algorithm is the number
of bit additions required. At each step the algorithm performs two or three additions, and n
steps produce the complexity O(n).

Binary multiplication of a = (1011)2 and b = (1101)2
a : 1 0 1 1
b : 1 1 0 1

c0 : 1 0 1 1
c1 : 0 0 0 0
c2 : 1 0 1 1
c3 : 1 0 1 1

carry: 1 1 1 1
a · b : 1 0 0 0 1 1 1 1

The complexity of multiplication, by definition, is the total number of bit additions the binary
shifts by one bit (i.e. a multiplication by 2). The standard multiplication algorithm above
takes 0 bit shifts for c0, 1 bit shift for c1, . . ., (n − 1) bit shifts for cn−1, which brings the
total number of shifts to 0 + 1 + 2 + . . . + (n − 1) = (n − 1)n/2 = O(n2). We also have to
perform additions of n-bit integer with (n + 1)-bit integer with . . . with (2n)-bit integer where
each of those additions takes C ·n bit additions, which brings the total amount of bit additions
to O(n2). Summary: the complexity of the standard binary multiplication algorithm above is
O(n2). Surprisingly, one can do much better: the textbook displays an algorithm that uses
only O(n1.585) bit operations to multiply two n-bit numbers.

Homework assignments. (due Friday 02/16).
9A:Rosen2.4-2e; 9B:Rosen2.4-8ac; 9C:Rosen2.4-36

