1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.4
2. The main message of this lecture:

The first practical algorithms come from mathematics, more precisely, from the arithmetic: the Euclidean algorithm of finding g.c.d., addition and multiplication of integers in different bases.

A surprisingly efficient (log complexity) computational procedure of finding the greatest common divisor is provided by the classical Euclidean algorithm. We will give a description of this algorithm along with the tracing of an example $\operatorname{gcd}(45,111)=$?

1. Divide the larger integer by the smaller: $111=2 \cdot 45+21$
2. If the remainder is 0 then the divisor is the desired $g c d$
3. Otherwise replace the larger by the remainder and go to $1 .:(45,111) \mapsto(21,45)$
$45=21 \cdot 2+3$, therefore $(21,45) \mapsto(3,21), \quad 21=7 \cdot 3+0$, thus $3=g c d(45,111)$.
The correctness of the Euclidean algorithm is based on the following lemma.
Lemma 9.1. $a=b q+r \quad \Rightarrow \quad g c d(a, b)=g c d(r, b)$
Proof. In fact the pairs (a, b) and (r, b) have exactly the same common divisors (therefore their greatest common divisors coincide). Indeed, $a=b q+r$ yields $r=a-b q$.

$$
\begin{aligned}
d|a \wedge d| b & \Rightarrow d|b q \wedge d| a-b q=r
\end{aligned} \quad \Rightarrow \quad d|r \wedge d| b
$$

Theorem 9.2. The Euclidean algorithm converges for any $a \geq b>o$ and computes $g c d(a, b)$.
Proof. Let $a \geq b>o$. Put $r_{0}=a, r_{1}=b$. Consider the steps of the algorithm:

$r_{0}=r_{1} \cdot q_{1}+r_{2}$,	$0 \leq r_{2}<r_{1}$
$r_{1}=r_{2} \cdot q_{2}+r_{3}$,	$0 \leq r_{3}<r_{2}$
$\ldots \ldots \ldots$	
$r_{n-2}=r_{n-1} \cdot q_{n-1}+r_{n}$,	$0 \leq r_{n}<r_{n-1}$
$r_{n-1}=r_{n} \cdot q_{n}$.	

The algorithm terminates since the sequence of remainders $r_{2}, r_{3}, r_{4}, \ldots$ is strictly descending yet nonnegative. therefore, it reaches 0 after some finite number of steps. Then $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\ldots \operatorname{gcd}\left(r_{n-1}, r_{n}\right)=r_{n}$.
Example 9.2. We all know that integers can be represented in decimal notations, e.g. $5678=$ $5 \cdot 1000+6 \cdot 100+7 \cdot 10+8=5 \cdot 10^{3}+6 \cdot 10^{2}+7 \cdot 10^{1}+8 \cdot 10^{0}$, or in binary, e.g. $(1101)_{2}=$ $1 \cdot 8+1 \cdot 4+0 \cdot 2+1 \cdot 1=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=13$. There is a cute mathematical theory that allows us to produce base b expansions of integers for any $b>1$.

Theorem 9.3. Let $b>1$. Then each positive integer n can be uniquely represented in the form $n=a_{k} b^{k}+a_{k-1} b^{k}+\ldots+a_{i} b+a_{0}$, where $k, a_{k}, a_{k-1}, \ldots, a_{1}, a_{0} \geq 0$ and $a_{i}<b(i=0,1, \ldots, k)$. Proof. To find an expansion of n one has to keep dividing n and then the quotients by the base b. We show both the general scheme, and an example of finding the base 7 expansion of $n=12345$.

Division	General formula for n	Example division	Representation of $n=12345$
$n=b q_{0}+a_{0}$	$n=b q_{0}+a_{0}$	$12345=7 \cdot 1763+4$	$12345=7 \cdot 1763+4$
$q_{0}=b q_{1}+a_{1}$	$=b\left(b q_{1}+a_{1}\right)+a_{0}$	$1763=7 \cdot 251+6$	$=7(7 \cdot 251+6)+4$
	$=b^{2} q_{1}+b a_{1}+a_{0}$		$=7^{2} \cdot 251+7 \cdot 6+4$
$q_{1}=b q_{2}+a_{2}$	$\begin{aligned} & =b^{2}\left(b q_{2}+a_{2}\right)+b a_{1}+a_{0} \\ & =b^{3} q_{2}+b^{2} a_{2}+b a_{1}+a_{0} \end{aligned}$	$251=7 \cdot 35+6$	$\begin{aligned} & =7^{2}(7 \cdot 35+6)+7 \cdot 6+4 \\ & =7^{3} \cdot 35+7^{2} 6+7 \cdot 6+4 \end{aligned}$
	$=b^{3} q_{2}+b^{2}$	$35=7 \cdot 5+0$	$=7^{3}(7 \cdot 5+0)+7^{2} \cdot 6+7 \cdot 6+4$
	$=b^{k} q_{k-1}+\ldots b a_{1}+a_{0}$		$=7^{4} \cdot 5+7^{3} \cdot 0+7^{2} \cdot 6+7 \cdot 6+4$
$q_{k-1}=b \cdot 0+a_{k}$	$=b^{k} a_{k}+\ldots+b a_{1}+a_{0}$		$=7^{4} \cdot 5+7^{3} \cdot 0+7^{2} \cdot 6+7 \cdot 6+4$

The algorithm terminates when a quotient $q_{k}=0$ is reached. The resulting b-expansion on $n=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$ (in the sample case $\left.12345=(506764)_{7}\right)$. The algorithm above converges since $n>q_{0}>q_{1}>\ldots$ and every strictly descending sequence of nonnegative integers is finite. For the proof of the uniqueness of the b-base expansion of n see the slides.
Example: Hexadecimal expansion - base 16. Digits: $0,1,2, \ldots, 9, A, B, C, D, E, F$, where $A=10, B=11, \ldots F=15 .(1 A 2 B 3 C)_{16}=1 \cdot 16^{5}+10 \cdot 16^{4}+2 \cdot 16^{3}+11 \cdot 16^{2}+3 \cdot 16+12=1715004$.

Binary addition, by example of $a=10110$ and $b=11011$.

carry:	1	1	1	1		
$a:$		1	0	1	1	0
$b:$		1	1	0	1	1
$s:$	1	1	0	0	0	1

The general formulas for computing the bits in the sum and the carry are: $s_{i+1}=a_{i}+b_{i}+c_{i}$ $(\bmod 2)$ and $c_{i+1}=\left\lfloor\left(a_{i}+b_{i}+c_{i}\right) / 2\right\rfloor$. The complexity of the addition algorithm is the number of bit additions required. At each step the algorithm performs two or three additions, and n steps produce the complexity $O(n)$.
Binary multiplication of $a=(1011)_{2}$ and $b=(1101)_{2}$

$a:$					1	0	1	1
$b:$					1	1	0	1
$c_{0}:$					1	0	1	1
$c_{1}:$				0	0	0	0	
$c_{2}:$			1	0	1	1		
$c_{3}:$		1	0	1	1			
cary:	1	1	1	1				
$a \cdot b:$	1	0	0	0	1	1	1	1

The complexity of multiplication, by definition, is the total number of bit additions the binary shifts by one bit (i.e. a multiplication by 2). The standard multiplication algorithm above takes 0 bit shifts for $c_{0}, 1$ bit shift for $c_{1}, \ldots,(n-1)$ bit shifts for c_{n-1}, which brings the total number of shifts to $0+1+2+\ldots+(n-1)=(n-1) n / 2=O\left(n^{2}\right)$. We also have to perform additions of n-bit integer with $(n+1)$-bit integer with \ldots with ($2 n$)-bit integer where each of those additions takes $C \cdot n$ bit additions, which brings the total amount of bit additions to $O\left(n^{2}\right)$. Summary: the complexity of the standard binary multiplication algorithm above is $O\left(n^{2}\right)$. Surprisingly, one can do much better: the textbook displays an algorithm that uses only $O\left(n^{1.585}\right)$ bit operations to multiply two n-bit numbers.
Homework assignments. (due Friday 02/16).
9A:Rosen2.4-2e; 9B:Rosen2.4-8ac; 9C:Rosen2.4-36

