- 1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.4
- 2. The main message of this lecture:

The first practical algorithms come from mathematics, more precisely, from the arithmetic: the Euclidean algorithm of finding g.c.d., addition and multiplication of integers in different bases.

A surprisingly efficient (log complexity) computational procedure of finding the greatest common divisor is provided by the classical Euclidean algorithm. We will give a description of this algorithm along with the tracing of an example gcd(45, 111) =?

- 1. Divide the larger integer by the smaller: $111 = 2 \cdot 45 + 21$
- 2. If the remainder is 0 then the divisor is the desired gcd
- 3. Otherwise replace the larger by the remainder and go to 1.: $(45, 111) \mapsto (21, 45)$

 $45 = 21 \cdot 2 + 3$, therefore $(21, 45) \mapsto (3, 21)$, $21 = 7 \cdot 3 + 0$, thus 3 = gcd(45, 111).

The correctness of the Euclidean algorithm is based on the following lemma.

Lemma 9.1. $a = bq + r \Rightarrow gcd(a, b) = gcd(r, b)$ **Proof.** In fact the pairs (a, b) and (r, b) have exactly the same common divisors (therefore their greatest common divisors coincide). Indeed, a = bq + r yields r = a - bq.

 $\begin{aligned} d|a \wedge d|b &\Rightarrow d|bq \wedge d|a - bq = r &\Rightarrow d|r \wedge d|b \\ d|r \wedge d|b &\Rightarrow d|bq \wedge d|bq + r = a &\Rightarrow d|b \wedge d|a \end{aligned}$

Theorem 9.2. The Euclidean algorithm converges for any $a \ge b > o$ and computes gcd(a, b). **Proof.** Let $a \ge b > o$. Put $r_0 = a$, $r_1 = b$. Consider the steps of the algorithm:

 $\begin{array}{ll} r_0 = r_1 \cdot q_1 + r_2, & 0 \leq r_2 < r_1 \\ r_1 = r_2 \cdot q_2 + r_3, & 0 \leq r_3 < r_2 \\ \dots & \dots & \dots \\ r_{n-2} = r_{n-1} \cdot q_{n-1} + r_n, & 0 \leq r_n < r_{n-1} \\ r_{n-1} = r_n \cdot q_n. \end{array}$

The algorithm terminates since the sequence of remainders r_2, r_3, r_4, \ldots is strictly descending yet nonnegative. therefore, it reaches 0 after some finite number of steps. Then $gcd(a, b) = gcd(r_0, r_1) = gcd(r_1, r_2) = \ldots gcd(r_{n-1}, r_n) = r_n$.

Example 9.2. We all know that integers can be represented in decimal notations, e.g. $5678 = 5 \cdot 1000 + 6 \cdot 100 + 7 \cdot 10 + 8 = 5 \cdot 10^3 + 6 \cdot 10^2 + 7 \cdot 10^1 + 8 \cdot 10^0$, or in binary, e.g. $(1101)_2 = 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$. There is a cute mathematical theory that allows us to produce **base** b **expansions** of integers for any b > 1.

Theorem 9.3. Let b > 1. Then each positive integer n can be uniquely represented in the form $n = a_k b^k + a_{k-1} b^k + \ldots + a_i b + a_0$, where $k, a_k, a_{k-1}, \ldots, a_1, a_0 \ge 0$ and $a_i < b$ $(i = 0, 1, \ldots, k)$. **Proof.** To find an expansion of n one has to keep dividing n and then the quotients by the base b. We show both the general scheme, and an example of finding the base 7 expansion of n = 12345.

Division	General formula for n	Example division	Representation of $n = 12345$
$n = bq_0 + a_0$	$n = bq_0 + a_0$	$12345 = 7 \cdot 1763 + 4$	$12345 = 7 \cdot 1763 + 4$
$q_0 = bq_1 + a_1$	$= b(bq_1 + a_1) + a_0$	$1763 = 7 \cdot 251 + 6$	$= 7(7 \cdot 251 + 6) + 4$
	$=b^2q_1+ba_1+a_0$		$= 7^2 \cdot 251 + 7 \cdot 6 + 4$
$q_1 = bq_2 + a_2$	$= b^2(bq_2 + a_2) + ba_1 + a_0$	$251 = 7 \cdot 35 + 6$	$= 7^2(7 \cdot 35 + 6) + 7 \cdot 6 + 4$
	$= b^3 q_2 + b^2 a_2 + b a_1 + a_0$		$= 7^3 \cdot 35 + 7^2 6 + 7 \cdot 6 + 4$
		$35 = 7 \cdot 5 + 0$	$= 7^3(7 \cdot 5 + 0) + 7^2 \cdot 6 + 7 \cdot 6 + 4$
	$= b^k q_{k-1} + \dots b a_1 + a_0$		$= 7^4 \cdot 5 + 7^3 \cdot 0 + 7^2 \cdot 6 + 7 \cdot 6 + 4$
$q_{k-1} = b \cdot 0 + a_k$	$= b^k a_k + \ldots + b a_1 + a_0$		$= 7^4 \cdot 5 + 7^3 \cdot 0 + 7^2 \cdot 6 + 7 \cdot 6 + 4$

The algorithm terminates when a quotient $q_k = 0$ is reached. The resulting *b*-expansion on $n = (a_k a_{k-1} \dots a_1 a_0)_b$ (in the sample case $12345 = (506764)_7$). The algorithm above converges since $n > q_0 > q_1 > \dots$ and every strictly descending sequence of nonnegative integers is finite. For the proof of the uniqueness of the *b*-base expansion of *n* see the slides.

Example: **Hexadecimal expansion** – base 16. Digits: 0, 1, 2, ..., 9, A, B, C, D, E, F, where A = 10, B = 11, ..., F = 15. $(1A2B3C)_{16} = 1 \cdot 16^5 + 10 \cdot 16^4 + 2 \cdot 16^3 + 11 \cdot 16^2 + 3 \cdot 16 + 12 = 1715004$.

Binary addition, by example of a = 10110 and b = 11011.

carry:	1	1	1	1		
a:		1	0	1	1	0
b:		1	1	0	1	1
s:	1	1	0	0	0	1

The general formulas for computing the bits in the sum and the carry are: $s_{i+1} = a_i + b_i + c_i \pmod{2}$ and $c_{i+1} = \lfloor (a_i + b_i + c_i)/2 \rfloor$. The complexity of the addition algorithm is the number of bit additions required. At each step the algorithm performs two or three additions, and n steps produce the complexity O(n).

Binary multiplication of $a = (1011)_2$ and $b = (1101)_2$

a:					1	0	1	1	
b:					1	1	0	1	
c_0 :					1	0	1	1	
c_1 :				0	0	0	0		
c_2 :			1	0	1	1			
c_3 :		1	0	1	1				
carry:	1	1	1	1					
$a \cdot b$:	1	0	0	0	1	1	1	1	

The complexity of multiplication, by definition, is the total number of bit additions the binary shifts by one bit (i.e. a multiplication by 2). The standard multiplication algorithm above takes 0 bit shifts for c_0 , 1 bit shift for $c_1, \ldots, (n-1)$ bit shifts for c_{n-1} , which brings the total number of shifts to $0 + 1 + 2 + \ldots + (n-1) = (n-1)n/2 = O(n^2)$. We also have to perform additions of *n*-bit integer with (n+1)-bit integer with \ldots with (2n)-bit integer where each of those additions takes $C \cdot n$ bit additions, which brings the total amount of bit additions to $O(n^2)$. Summary: the complexity of the standard binary multiplication algorithm above is $O(n^2)$. Surprisingly, one can do much better: the textbook displays an algorithm that uses only $O(n^{1.585})$ bit operations to multiply two *n*-bit numbers.

Homework assignments. (due Friday 02/16).

9A:Rosen2.4-2e; 9B:Rosen2.4-8ac; 9C:Rosen2.4-36