CS280, Spring 2001 Handout 9
February 9, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.4

2. The main message of this lecture:

The first practical algorithms come from mathematics,
more precisely, from the arithmetic: the Euclidean al-
gorithm of finding g.c.d., addition and multiplication of
integers in different bases.

A surprisingly efficient (log complexity) computational procedure of finding the greatest com-
mon divisor is provided by the classical Euclidean algorithm. We will give a description of this
algorithm along with the tracing of an example gecd(45,111) =7

1. Divide the larger integer by the smaller: 111 =245 4 21

2. If the remainder is 0 then the divisor is the desired gcd

3. Otherwise replace the larger by the remainder and go to 1.: (45,111) — (21,45)
45 = 21 - 2 4 3, therefore (21,45) — (3,21), 21 =7-3+0, thus 3 = ged(45,111).

The correctness of the Euclidean algorithm is based on the following lemma.

Lemma 9.1. a=bg+r = gcd(a,b) = gcd(r,b)
Proof. In fact the pairs (a,b) and (r,b) have exactly the same common divisors (therefore
their greatest common divisors coincide). Indeed, a = bg + r yields r = a — bg.

dlandlb = dlbgNdla—bg=r = dlrANdb

dir Ndlb = dlbgNdlbg+r=a = dlbAda

Theorem 9.2. The Euclidean algorithm converges for any a > b > o and computes gcd(a,b).
Proof. Let a > b > 0. Put ro = a, r;1 = b. Consider the steps of the algorithm:

ro =7T1-q1+ T2, 0<ra<m
T =Ty q2+ T3, 0<r3<mr
Tn—2 = Tn—1"Qqn-1+ Tn, 0<ry, <rp_1
Tn—1 = "Tn " (Qn-

The algorithm terminates since the sequence of remainders 79, 73,74, ... is strictly descending
yet nonnegative. therefore, it reaches 0 after some finite number of steps. Then ged(a,b) =
ged(ro,m) = ged(r1,r2) = ... ged(rp—1,7Tn) = Th.

Example 9.2. We all know that integers can be represented in decimal notations, e.g. 5678 =
5-1000 +6-100 +7-10+8 =5-10% + 6 - 102 + 7- 10! + 8- 10%, or in binary, e.g. (1101)y =
1-84+41-440-2+1-1=1-2241-2240-2' +1-2%=13. There is a cute mathematical
theory that allows us to produce base b expansions of integers for any b > 1.

Theorem 9.3. Let b > 1. Then each positive integer n can be uniquely represented in the form
n = apb? +ar_1b" + ...+ a;b+ag, where k,ap, ap_1,...,a1,a0 >0 and a; < b (1=0,1,...,k).
Proof. To find an expansion of n one has to keep dividing n and then the quotients by the
base b. We show both the general scheme, and an example of finding the base 7 expansion of
n = 12345.



Division General formula for n Example division Representation of n = 12345
n = bqy + ag n = bqy + ag 12345 =7-1763 +4 | 12345 =7-1763 + 4
qo = bq1 + a1 = b(bq1 + a1) + ag 1763 = 7-251 + 6 =7(7-251 +6)+4
= b%qy + bay + ag =72.251+7-6+4
q1 = bgo + as = b%(bga + az) +bay +ag | 251 =7-35+6 =7%(7-35+6)+7-6+4
:b3q2—|—b2ag+ba1—|—a0 =73.354+T7%64+7-6+4
............................................. 35=7-5+0 =7(7-5+0)+7>-6+7-6+4
....................... =bFq_1+...bay + ag =7 54+7.0+7-64+7-6+4
Qo1 =b-0+ay | =bfar +...+bay +ag =7 54+7.04+7-64+7-6+4

The algorithm terminates when a quotient g = 0 is reached. The resulting b-expansion on
n = (agag—1.-..a1a0)p (in the sample case 12345 = (506764)7). The algorithm above converges
since n > qo > q1 > ... and every strictly descending sequence of nonnegative integers is finite.
For the proof of the uniqueness of the b-base expansion of n see the slides.

Example: Hexadecimal expansion — base 16. Digits: 0,1,2,...,9,4,B,C,D, E, F, where
A=10,B=11,...F =15. (1A2B3C)16 = 1-16°+10-16%+2-163+11-162+3-164-12 = 1715004.

Binary addition, by example of ¢ = 10110 and b = 11011.
carry: 1 1 1 1

a: 1 0 1 1 0

b: 1 1 0 1 1

s: 1. 1.0 0 0 1
The general formulas for computing the bits in the sum and the carry are: s;4+1 = a; + b; + ¢;
(mod 2) and ¢;41 = |(a; + b; +¢;)/2]. The complexity of the addition algorithm is the number
of bit additions required. At each step the algorithm performs two or three additions, and n
steps produce the complexity O(n).

Binary multiplication of a = (1011)3 and b = (1101),
a: 0

b:

Cy .

Cc1
co 1
C3: 1 0
carry: 1 1 1
a-b: 1. 0 0 0 1 1 1 1

The complexity of multiplication, by definition, is the total number of bit additions the binary
shifts by one bit (i.e. a multiplication by 2). The standard multiplication algorithm above
takes 0 bit shifts for ¢y, 1 bit shift for ¢1, ..., (n — 1) bit shifts for ¢,—1, which brings the
total number of shifts to 0 +1+2+ ...+ (n —1) = (n — 1)n/2 = O(n?). We also have to
perform additions of n-bit integer with (n 4 1)-bit integer with ... with (2n)-bit integer where
each of those additions takes C - n bit additions, which brings the total amount of bit additions
to O(n?). Summary: the complexity of the standard binary multiplication algorithm above is
O(n?). Surprisingly, one can do much better: the textbook displays an algorithm that uses
only O(n!-*®) bit operations to multiply two n-bit numbers.

_= =0 O
— = O R
= O O
O RO
[ R

Homework assignments. (due Friday 02/16).
9A:Rosen2.4-2e; 9B:Rosen2.4-8ac; 9C:Rosen2.4-36



