
CS280, Spring 2001 Handout 8
February 7, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.3

2. The main message of this lecture:

Similar to addition, multiplication, and subtraction of
integers, division by a nonzero integer is also always de-
fined, one only has to take a remainder into account.
Such related notions as primes, prime factors, modular
arithmetic, etc,. play pivotal role in mathematics and
have striking applications in Computer Science.

Within this lecture the variables range over the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Every a can be divided by any nonzero d with a remainder. For example,

if a = 12 and d = 4 the quotient is q = 12/4 = 3 and the remainder r = 0,
if a = 13 and d = 4 then q = b13/4c = 3, r = a − dq = 13 − 3 · 4 = 13 − 12 = 1,
if a = 14 and d = 4 then q = b14/4c = 3, r = a − dq = 14 − 3 · 4 = 14 − 12 = 2,
if a = 15 and d = 4 then q = b15/4c = 3, r = a − dq = 15 − 3 · 4 = 15 − 12 = 3,
if a = 16 and d = 4 then q = b16/4c = 4, r = a − dq = 16 − 4 · 4 = 16 − 16 = 0,
if a = 0 and d = 4 then q = b0/4c = 0, r = a − dq = 0 − 0 · 4 = 0 − 0 = 0,
if a = −1 and d = 4 then q = b−1/4c = −1, r = a − dq = −1 − (−1) · 4 = −1 + 4 = 3,
if a = −2 and d = 4 then q = b−2/4c = −1, r = a − dq = −2 − (−1) · 4 = −2 + 4 = 2,
if a = −3 and d = 4 then q = b−3/4c = −1, r = a − dq = −3 − (−1) · 4 = −3 + 4 = 1.,
if a = −4 and d = 4 then q = b−4/4c = −1, r = a − dq = −4 − (−1) · 4 = −4 + 4 = 0,

Theorem 8.1. For any a (dividend) and d 6= 0 (divisor) there exist unique q (quotient)
and r (remainder) such that a = d · q + r and 0 ≤ r < d.
Proof. Existence of q and r. Given a find the largest q such that d · q ≤ a and put d = a− dq.
Both requirements a = dq + r and 0 ≤ r < d are then met. Note that this instruction covers
all the possible cases: a > 0, a < 0 and a = 0.

Uniqueness. Suppose a = dq1 + r1 = dq2 + r2 and both 0 ≤ r1, r2 < d. Subtract both
representation of a from each other: 0 = (a−a) = (dq1 +r1)−(dq2+r2) = d(q1−q2)+(r1−r2).
Therefore, d(q2 − q1) = r1 − r2 and |d(q2 − q1)| = |r1 − r2|. If q2 6= q1 then |q2 − q1| ≥ 1 and
|d(q2 − q1)| ≥ d. On the other hand, |r1 − r2| < d, which makes the assumption that q2 6= q1

impossible. Therefore, q2 = q1 and thus r1 = r2.

Definition 8.2. a 6= 0 divides b (notation a|b) if ∃c(ac = b). We say that a is a factor of b,
and b is a multiple of a. Examples: 4|12, 1| − 1, 101|101, 1|0.
Some easy properties of ‘|’:

a|b ∧ a|c ⇒ a|(b + c) (Proof: ax = b ∧ ay = c ⇒ ax + ay = b + c ⇒ a(x + y) = b + c)
a|b ⇒ a|bc (Proof: ax = b ⇒ axc = bc)
a|b ∧ b|c ⇒ a|c (Proof: ax = b ∧ by = c ⇒ axy = by = c).

Definition 8.3. p is a prime, if p > 1 and p has no factors other then 1 and itself. Examples:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, . . . are primes. n is a composite inte-
ger, if n > 1 and n is not a prime. It is clear that every composite integer is a product (not
necessarily unique) of two strictly less integers: 30 = 2 · 15 = 3 · 10 = 5 · 6



Theorem 8.4. (The Fundamental Theorem of Arithmetic.)
Any n > 1 is a unique product of primes.

Proof (sketch). Finding all prime factors: given n keep dividing until all the factors are prime.
For example, 60 = 2 · 30 = 2 · 2 · 15 = 2 · 2 · 3 · 5 = 22 · 3 · 5. Proving uniqueness needs some
more work, we will do it later.

Examples of prime factorizations: 2 = 2, 3 = 3, 4 = 2 · 2, 5 = 5, 6 = 2 · 3, 7 = 7, 8 = 2 · 2 · 2,
9 = 3 · 3, 10 = 2 · 5, 30 = 2 · 3 · 5, 100 = 2 · 2 · 5 · 5, etc.

Theorem 8.5. (An easy primality test) A composite n has a prime divisor less or equal to√
n. Therefore, if none of the primes p ≤ √

n divides n, then n is itself a prime.
Proof. Given a composite n find a ≤ b < n such that n = ab. Obviously, a ≤ √

n, since
otherwise both a, b >

√
n and thus a·b >

√
n
√

n = n. By 8.4, a has a prime divisor p ≤ a ≤ √
n,

which is a divisor of n.
Examples:

√
143 = 11.95826 . . . < 12, therefore either 143 has a prime divisor ≤ 11 or it is a

prime. In fact 11|143, and thus 143 is a composite number. To check that 103 is a prime it
suffices to verify that none of the primes ≤ √

103 = 10.148891 (i.e. 2, 3, 5, 7) divides 103.

Comment: factoring and primality testing for large n’s remain very hard and time consuming
problems. We will discuss this later when talking about RSA cryptosystem.

Definition 8.6. The greatest common divisor of a, b (not both zero) is the largest d which
is a divisor of both a and b (notation d = gcd(a, b)). We say that a and b are relatively prime
if gcd(a, b) = 1. Examples: gcd(36, 48) = 12 gcd(15, 28) = 1 – relatively prime.

Knowing prime factorizations of a, b helps finding gcd(a, b). Example: gcd(23 ·3·72 , 2·32 ·5·7) =
2min (3,1) · 3min (1,2) · 5min (0,1) · 7min (2,1) = 2 · 3 · 7 = 35

Definition 8.7. The least common multiple of a, b > 0 is the smallest l which is a multiple
of both a and b (notation: l = lcm(a, b)). Examples: lcm(36, 48) = 144, lcm(20, 21) = 20 · 21 =
420, lcm(23 · 3 · 72, 2 · 32 · 5 · 7) = 2max (3,1) · 3max (1,2) · 5max (0,1) · 7max (2,1) = 23 · 32 · 51 · 72 = 17640

Exercise: show that a · b = gcd(a, b) · lcm(a, b) (i.g. 6 · 8 = 48 = 2 · 24 = gcd(6, 8) · lcm(6, 8)).

Definition 8.8. Let m > 0. By a mod m we understand the remainder when a is divided by
m. Integers a and b are congruent modulo m if a mod m = b mod m (or, equivalently, if
m divides a−b, or, equivalently, if a = b+km for some k). Another notation for a is congruent
to b modulo m is a ≡ b (mod m).
Examples: 0 ≡ 5 ≡ 10 ≡ 15 ≡ −5 ≡ 10 ≡ −15 (mod 5)

1 ≡ 6 ≡ 11 ≡ 16 ≡ −4 ≡ −9 ≡ −14 (mod 5)
2 ≡ 7 ≡ 12 ≡ 17 ≡ −3 ≡ −8 ≡ −13 (mod 5), etc.

Theorem 8.9. (Addition and multiplication of congruent numbers) If a ≡ b (mod m) and c ≡ d
(mod m), then (a + c) ≡ (b + d) (mod m) and (a · c) ≡ (b · d) (mod m).
Examples: 7 ≡ 2 (mod 5), 8 ≡ 3 (mod 5) ⇒ (7 + 8) = 15 ≡ 0 ≡ (2 + 3) (mod 5),

7 ≡ 2 (mod 5), (−1) ≡ 4 (mod 5) ⇒ (7 · (−1)) = −7 ≡ 3 ≡ 8 ≡ (2 · 4) (mod 5).

Applications: hashing functions, pseudorandom numbers, encryption – see textbook
and slides.

Homework assignments. (due Friday 02/16. Mind a new numeration of problems).
8A:Rosen2.3-8ef; 8B:Rosen2.3-10ef; 8C:Rosen2.3-28ab; 8D:Rosen2.3-46c.


