
CS280, Spring 2001 Handout 6
February 2, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 1.8

2. The main message of this lecture:

There are two good reasons to compare functions ac-
cording to their asymptotic behavior. First: very often
it takes big values of the argument for a function to show
its real strength. Second: often (but not always!) big
arguments correspond to real size problems.

Real numbers (as well as rationals, integers, natural numbers) are linearly ordered: for any two
numbers a, b either a < b or a > b or a = b. Unfortunately, this does not hold for functions.
Suppose by f ≤ g we understand the condition ∀x(f(x) ≤ g(x)), for example, cos x ≤ x2 + 1
since for all x ∈ R cos x ≤ 1 and 1 ≤ x2 + 1. Then too many pairs of functions become
incomparable. for example, cos x versus x2. For some of the x’s, e.g. x = 0 cos x is greater
then the squaring function: cos 0 = 1 > 0 = 02. However, for x ≥ 1 the latter clearly dominates:
12 = 1, 22 = 4, . . . , 102 = 100, . . ., whereas cos x stays somewhere between −1 and 1. Another
typical example: x2 versus x + 100. For small x’s the squaring function again loses: 02 = 0,
12 = 1, 22 = 4, . . . whereas the linear function with a “big” constant x + 100 scores much
better points: 0 + 100 = 100, 1 + 100 = 101, 2 + 100 = 102, However, the rate of growth
of x2 is much higher and this function catches up quickly: 102 = 100 < 10 + 100 = 110, but
112 = 121 > 11 + 100 = 111, . . . 202 = 400 > 20 + 100 = 120, . . . 1002 = 10000 > 100 + 100 =
200. According to a common sense judgment, x2 is much larger than x + 100.

Even more striking difference is provided by yet another canonical example: n2 +100 versus
2n. Here is the table of the initial values of those functions.

n n2 + 100 2n

1 101 2
2 104 4
3 109 8

.
10 200 1024
.
100 10100 > 1030

Note that for n = 100 (a moderate size input), n2 + 100 constitute a negligible fraction of
2n, something like 10−25. The main reason for such a mismatch is, of course, the exponential
function 2n which becomes ridiculously large. In computational complexity, those algorithms
which make exponential (of the size of input) number of steps are regarded non-feasible.

In what follows f, g, h may be regarded as functions from R to R (as well as from to N
to R). Reminder: |a| stands for the absolute value of a when the sign of a is stripped off.
Formally speaking, |a| = a, if a ≥ 0 and |a| = −a, if a < 0. For example, |2| = 2, | − 2| =
−(−2) = 2, |0| = 0. Some common inequalities which follow immediately from the definitions:
a ≤ |a|, |a ± b| ≤ |a| + |b|.

Definition 6.1. f = O(g) (read f is big-O of g) if ∃C∃k∀x(x > k → (|f(x)| ≤ C · |g(x)|).
The informal meaning of “f is O(g)” is that some multiple of g eventually overruns f . This
relation is usually regarded a sort of inequality on functions f � g. We say that f and g have
the same order (notation f = Θ(g)), of both f = O(g) and g = O(f).
Examples:

• x + 100 is O(x2). Indeed, put C = 1, k = 100 and x > k. Then x + 100 < x · 100 < x2.
• x2 + 100x is O(x2) (despite the fact that the former functions is always greater than the

latter for positive xs, moreover, their difference (x2 +100x)−x2 = 100x grows to +∞). Indeed,
put C = 2, k = 100. Then x > 100 → x2 + 100x < x2 + x · x = 2x2.

• x2 is O(x2 + 100x) (C = 1, k = 0), therefore, f and g have the same order.
• x + 100 and x2 do not have the same order, on particular, x2 is not O(x + 100). Indeed,

let us first negate the definition of “big-O” above: ∀C∀k∃x(x > k ∧ (|f(x)| > C · |g(x)|), and
then prove that the pair f(x) = x + 100 and g(x) = x2 satisfy the negation of the “big-O”
definition. Let C, k are any given reals. Take any x > max (k, 2C, 100). Then

x2 > 2Cx = C · 2x = C(x + x) > C(x + 100).

Example 6.2. Some simple reference functions of n used in the complexity theory. Here f ≺ g
means “f = O(g) but not g = O(f)”, n! = 1 · 2 · 3 · . . . · n, log is the base 2 logarithm.

1 ≺ log log n ≺ log n ≺ n ≺ n log log n ≺ n log n ≺ n2 ≺ n3 ≺ . . . ≺ 2n ≺ 3n ≺ . . . ≺ n! ≺ nn

Theorem 6.3. If f1 = O(g1) and f2 = O(g2) then f1 + f2 = O(max (|g1|, |g2|)).
Proof. For appropriate C1, k1, C2, k2 we have

x > k1 ⇒ |f1(x)| ≤ C1|g1(x)| x > k2 ⇒ |f2(x)| ≤ C2|g2(x)|.
Without loss of generality we assume that C1, C2 > 0. Put k = max (k1, k2), C = C1 + C2,
g = max (|g1|, |g2|). Then x > k ⇒ |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)| ≤ C1|g1(x)|+ C2|g2(x)| ≤
C1|g(x)| + C2|g(x)| ≤ (C1 + C2)|g(x)| = C|g(x)|.
Example: x2 = O(x2), 100x = O(x2), therefore x2 + 100x = O(x2).

Theorem 6.4. If f1 = O(g1) and f2 = O(g2) then f1 · f2 = O(g1 · g2).
Proof. For appropriate C1, k1, C2, k2 we have

x > k1 ⇒ |f1(x)| ≤ C1|g1(x)| x > k2 ⇒ |f2(x)| ≤ C2|g2(x)|.
Put k = max (k1, k2), C = C1C2. Then x > k ⇒ |f1(x)f2(x)| = |f1(x)| · |f2(x)| ≤ C1|g1(x)| ·
C2|g2(x)| = C1C2|g1(x) · g2(x)| = C|g1(x) · g2(x)|.
Example: Give as good big-O estimate as possible in terms of simple reference functions for
f(n) = (3n+1) log (5n3 + 1)+10n2. We may assume that n is sufficiently large. 3n+1 = O(n),
log (5n3 + 1) < log (6n3) = log 6+3 log n < 4 log n = O(log n) (this works for n > 6). Therefore,
(3n + 1) log (5n3 + 1) = O(n log n). Since 10n2 = O(n2), and max(n log n, n2) = n2, by 6.3,
f(n) = O(n2). Moreover, since n2 < f(n) we have n2 = O(f) and thus f(n) = Θ(n2).

Theorem 6.5. F (x) = anxn + an−1x
n−1 + . . . + a1x + a0 (an 6= 0) has order xn.

Proof. We show f(x) = O(xn) and leave xn = O(f) as an exercise. Let k = 1 and x > k. Then
|anxn +an−1x

n−1 + . . .+a1x+a0| ≤ |an|xn + |an−1|xn−1 + . . .+ |a1|x+ |a0| ≤ xn(|an|+ |an−1|
x +

. . .+ |a1|
xn−1 + |a0|

xn) ≤ xn(|an|+|an−1|+. . .+|a1|+|a0|). Now put C = |an|+|an−1|+. . .+|a1|+|a0|
and get the desired |f(x)| ≤ C · xn whenever x > k.

Homework assignments. (due Friday 02/09).
A. Section 1.8: 2, 8ab, 20ab, 28a
B. Show that 2n = O(n!), but n! is not O(2n).

