1. Reading: K. Rosen Discrete Mathematics and Its Applications, 1.8
2. The main message of this lecture:

There are two good reasons to compare functions according to their asymptotic behavior. First: very often it takes big values of the argument for a function to show its real strength. Second: often (but not always!) big arguments correspond to real size problems.

Real numbers (as well as rationals, integers, natural numbers) are linearly ordered: for any two numbers a, b either $a<b$ or $a>b$ or $a=b$. Unfortunately, this does not hold for functions. Suppose by $f \leq g$ we understand the condition $\forall x(f(x) \leq g(x))$, for example, $\cos x \leq x^{2}+1$ since for all $x \in \mathbf{R} \cos x \leq 1$ and $1 \leq x^{2}+1$. Then too many pairs of functions become incomparable. for example, $\cos x$ versus x^{2}. For some of the x 's, e.g. $x=0 \cos x$ is greater then the squaring function: $\cos 0=1>0=0^{2}$. However, for $x \geq 1$ the latter clearly dominates: $1^{2}=1,2^{2}=4, \ldots, 10^{2}=100, \ldots$, whereas $\cos x$ stays somewhere between -1 and 1 . Another typical example: x^{2} versus $x+100$. For small x 's the squaring function again loses: $0^{2}=0$, $1^{2}=1,2^{2}=4, \ldots$ whereas the linear function with a "big" constant $x+100$ scores much better points: $0+100=100,1+100=101,2+100=102, \ldots$. However, the rate of growth of x^{2} is much higher and this function catches up quickly: $10^{2}=100<10+100=110$, but $11^{2}=121>11+100=111, \ldots 20^{2}=400>20+100=120, \ldots 100^{2}=10000>100+100=$ 200. According to a common sense judgment, x^{2} is much larger than $x+100$.

Even more striking difference is provided by yet another canonical example: $n^{2}+100$ versus 2^{n}. Here is the table of the initial values of those functions.

n	$n^{2}+100$	2^{n}
1	101	2
2	104	4
3	109	8
\ldots	\ldots	\ldots
10	200	1024
\ldots	\ldots	\ldots
100	10100	$>10^{30}$

Note that for $n=100$ (a moderate size input), $n^{2}+100$ constitute a negligible fraction of 2^{n}, something like 10^{-25}. The main reason for such a mismatch is, of course, the exponential function 2^{n} which becomes ridiculously large. In computational complexity, those algorithms which make exponential (of the size of input) number of steps are regarded non-feasible.
In what follows f, g, h may be regarded as functions from \mathbf{R} to \mathbf{R} (as well as from to \mathbf{N} to \mathbf{R}). Reminder: $|a|$ stands for the absolute value of a when the sign of a is stripped off. Formally speaking, $|a|=a$, if $a \geq 0$ and $|a|=-a$, if $a<0$. For example, $|2|=2,|-2|=$ $-(-2)=2,|0|=0$. Some common inequalities which follow immediately from the definitions: $a \leq|a|,|a \pm b| \leq|a|+|b|$.

Definition 6.1. $f=O(g)($ read f is big- O of $g)$ if $\exists C \exists k \forall x(x>k \rightarrow(|f(x)| \leq C \cdot|g(x)|)$. The informal meaning of " f is $O(g)$ " is that some multiple of g eventually overruns f. This relation is usually regarded a sort of inequality on functions $f \preceq g$. We say that f and g have the same order (notation $f=\Theta(g)$), of both $f=O(g)$ and $g=O(f)$.
Examples:

- $x+100$ is $O\left(x^{2}\right)$. Indeed, put $C=1, k=100$ and $x>k$. Then $x+100<x \cdot 100<x^{2}$.
- $x^{2}+100 x$ is $O\left(x^{2}\right)$ (despite the fact that the former functions is always greater than the latter for positive x s, moreover, their difference $\left(x^{2}+100 x\right)-x^{2}=100 x$ grows to $\left.+\infty\right)$. Indeed, put $C=2, k=100$. Then $x>100 \rightarrow x^{2}+100 x<x^{2}+x \cdot x=2 x^{2}$.
- x^{2} is $O\left(x^{2}+100 x\right)(C=1, k=0)$, therefore, f and g have the same order.
- $x+100$ and x^{2} do not have the same order, on particular, x^{2} is not $O(x+100)$. Indeed, let us first negate the definition of "big-O" above: $\forall C \forall k \exists x(x>k \wedge(|f(x)|>C \cdot|g(x)|)$, and then prove that the pair $f(x)=x+100$ and $g(x)=x^{2}$ satisfy the negation of the "big-O" definition. Let C, k are any given reals. Take any $x>\max (k, 2 C, 100)$. Then

$$
x^{2}>2 C x=C \cdot 2 x=C(x+x)>C(x+100) .
$$

Example 6.2. Some simple reference functions of n used in the complexity theory. Here $f \prec g$ means " $f=O(g)$ but not $g=O(f)$ ", $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$, log is the base 2 logarithm.
$1 \prec \log \log n \prec \log n \prec n \prec n \log \log n \prec n \log n \prec n^{2} \prec n^{3} \prec \ldots \prec 2^{n} \prec 3^{n} \prec \ldots \prec n!\prec n^{n}$
Theorem 6.3. If $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right)$ then $f_{1}+f_{2}=O\left(\max \left(\left|g_{1}\right|,\left|g_{2}\right|\right)\right)$.
Proof. For appropriate $C_{1}, k_{1}, C_{2}, k_{2}$ we have

$$
x>k_{1} \Rightarrow\left|f_{1}(x)\right| \leq C_{1}\left|g_{1}(x)\right| \quad x>k_{2} \Rightarrow\left|f_{2}(x)\right| \leq C_{2}\left|g_{2}(x)\right| .
$$

Without loss of generality we assume that $C_{1}, C_{2}>0$. Put $k=\max \left(k_{1}, k_{2}\right), C=C_{1}+C_{2}$, $g=\max \left(\left|g_{1}\right|,\left|g_{2}\right|\right)$. Then $x>k \Rightarrow\left|f_{1}(x)+f_{2}(x)\right| \leq\left|f_{1}(x)\right|+\left|f_{2}(x)\right| \leq C_{1}\left|g_{1}(x)\right|+C_{2}\left|g_{2}(x)\right| \leq$ $C_{1}|g(x)|+C_{2}|g(x)| \leq\left(C_{1}+C_{2}\right)|g(x)|=C|g(x)|$.
Example: $x^{2}=O\left(x^{2}\right), 100 x=O\left(x^{2}\right)$, therefore $x^{2}+100 x=O\left(x^{2}\right)$.
Theorem 6.4. If $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right)$ then $f_{1} \cdot f_{2}=O\left(g_{1} \cdot g_{2}\right)$.
Proof. For appropriate $C_{1}, k_{1}, C_{2}, k_{2}$ we have

$$
x>k_{1} \Rightarrow\left|f_{1}(x)\right| \leq C_{1}\left|g_{1}(x)\right| \quad x>k_{2} \Rightarrow\left|f_{2}(x)\right| \leq C_{2}\left|g_{2}(x)\right| .
$$

Put $k=\max \left(k_{1}, k_{2}\right), C=C_{1} C_{2}$. Then $x>k \Rightarrow\left|f_{1}(x) f_{2}(x)\right|=\left|f_{1}(x)\right| \cdot\left|f_{2}(x)\right| \leq C_{1}\left|g_{1}(x)\right|$. $C_{2}\left|g_{2}(x)\right|=C_{1} C_{2}\left|g_{1}(x) \cdot g_{2}(x)\right|=C\left|g_{1}(x) \cdot g_{2}(x)\right|$.
Example: Give as good big-O estimate as possible in terms of simple reference functions for $f(n)=(3 n+1) \log \left(5 n^{3}+1\right)+10 n^{2}$. We may assume that n is sufficiently large. $3 n+1=O(n)$, $\log \left(5 n^{3}+1\right)<\log \left(6 n^{3}\right)=\log 6+3 \log n<4 \log n=O(\log n)$ (this works for $\left.n>6\right)$. Therefore, $(3 n+1) \log \left(5 n^{3}+1\right)=O(n \log n)$. Since $10 n^{2}=O\left(n^{2}\right)$, and $\max \left(n \log n, n^{2}\right)=n^{2}$, by 6.3, $f(n)=O\left(n^{2}\right)$. Moreover, since $n^{2}<f(n)$ we have $n^{2}=O(f)$ and thus $f(n)=\Theta\left(n^{2}\right)$.
Theorem 6.5. $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\left(a_{n} \neq 0\right)$ has order x^{n}.
Proof. We show $f(x)=O\left(x^{n}\right)$ and leave $x^{n}=O(f)$ as an exercise. Let $k=1$ and $x>k$. Then $\left|a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right| \leq\left|a_{n}\right| x^{n}+\left|a_{n-1}\right| x^{n-1}+\ldots+\left|a_{1}\right| x+\left|a_{0}\right| \leq x^{n}\left(\left|a_{n}\right|+\frac{\left|a_{n-1}\right|}{x}+\right.$ $\left.\ldots+\frac{\left|a_{1}\right|}{x^{n-1}}+\frac{\left|a_{0}\right|}{x^{n}}\right) \leq x^{n}\left(\left|a_{n}\right|+\left|a_{n-1}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|\right)$. Now put $C=\left|a_{n}\right|+\left|a_{n-1}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|$ and get the desired $|f(x)| \leq C \cdot x^{n}$ whenever $x>k$.
Homework assignments. (due Friday 02/09).
A. Section 1.8: 2, 8ab, 20ab, 28a
B. Show that $2^{n}=O(n!)$, but $n!$ is not $O\left(2^{n}\right)$.

