1. Reading: K. Rosen Discrete Mathematics and Its Applications, 1.7
2. The main message of this lecture:

Summation of sequences, both finite and infinite, was one of the first recursive procedures ever. In some classical cases: e.g. arithmetic, geometric progressions, it was possible to find concise algebraic formulas.

A naive understanding of a sequence is some sort of an infinite ordered list of elements $a_{0}, a_{1}, a_{2}, \ldots$. Using the notion of function we can give a more scientific definition.

Definition 5.1. A sequence is a function f whose domain is the set \mathbf{N} of natural numbers $\{0,1,2, \ldots\}$. For the sake of tradition we denote $f(n)$ by a_{n} and write a sequence in the form $\left\{a_{n}\right\}=a_{0}, a_{1}, a_{2}, \ldots$. We will also be considering sequences starting from 1 (functions having domain $\{1,2,3 \ldots\}$), or even from some other integer. Examples:

$$
\begin{array}{ll}
\{n\}=0,1,2, \ldots & \left\{n^{2}\right\}=0,1,4,9,16,25, \ldots \\
\{1 / n\}_{(n \geq 1)}=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots & \left\{2^{n}\right\}=1,2,4,8,16, \ldots \\
\left\{1 / 2^{n}\right\}=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \cdots & \left\{(-1)^{n}\right\}=1,-1,1,-1,1,-1, \ldots
\end{array}
$$

Mind the difference between a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and a set $\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}$. For example, the sequence $\left\{(-1)^{n}\right\}=1,-1,1,-1,1,-1, \ldots$ is infinite, whereas the set

$$
\{1,-1,1,-1,1,-1, \ldots\}=\{1,-1\}=\{-1,1\} .
$$

Definition 5.2. A string is a finite sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}\left(\right.$ or $\left.a_{1}, a_{2}, \ldots, a_{n}\right)$, which can be identified with a function having domain $\{0,1,2, \ldots, n\}$ (or $\{1,2, \ldots, n\}$ respectively).
Definition 5.3. Summation notation:

$$
a_{m}+a_{m+1}+\ldots+a_{n}=\sum_{i=m}^{n} a_{i}
$$

Here a_{i} is the summation term, i is the index of summation, m is the lower limit and n is the upper limit of the summation. Examples:

$$
1+2+3+\ldots+10=\sum_{i=1}^{10} i=55 \quad 1+4+9+\ldots+100=\sum_{i=1}^{10} i^{2}=385
$$

Note that the summation index i is a bound variable and thus can be renamed with changing the meaning of the summation. More examples:

$$
\sum_{i=1}^{10} a_{i}=\sum_{k=1}^{10} a_{k}, \quad \sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}, \quad \sum_{i=m}^{n} \lambda a_{i}=\lambda \sum_{i=m}^{n} a_{i}, \quad \sum_{i=1}^{n} c=n c
$$

Definition 5.4. An arithmetic progression is a sequence satisfying $a_{n+1}-a_{n}=d$, where d is constant for a given progression, called the difference of the progression. An arithmetic progression is $a, a+d, a+2 d, a+3 d, \ldots=\{a+n d\}$ and thus is specified by d and its initial term a. Examples:

$$
\begin{array}{ll}
1,2,3,4, \ldots(\text { here } a=1, d=1) & -2,0,2,4,6, \ldots(\text { here } a=-2, d=2) \\
100,50,0,-50,-100, \ldots(a=100, d=-50) & \left\{n^{2}\right\}=0,1,4,9,16,25, \ldots(a=0, d=\text { ? sorry, }
\end{array}
$$ it is not an arithmetic progression!).

Theorem 5.5. The sum $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$ of the first n terms of an arithmetic progression is $S_{n}=n\left(a_{1}+a_{n}\right) / 2$.
Proof. Count S_{n} twice as $2 S_{n}=\left(a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}\right)+\left(a_{n}+a_{n-1}+\ldots+a_{2}+a_{1}\right)$, take the sums of the corresponding terms in both of those expressions: $2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{2}+a_{n-1}\right)+$ $\ldots+\left(a_{n-1}+a_{2}\right)+\left(a_{n}+a_{1}\right)$. Note that the sum of terms inside each of n pairs of parentheses is constant, and thus equals to the first of them $\left(a_{1}+a_{n}\right)$. Therefore, $2 S_{n}=n \cdot\left(a_{1}+a_{n}\right)$ and $S_{n}=n \cdot\left(a_{1}+a_{n}\right) / 2$.
Examples: $1+2+3+\ldots+10=(1+10) \cdot 10 / 2=11 \cdot 10 / 2=11 \cdot 5=55$,
$1+3+5+\cdot+15=(1+15) \cdot 8 / 2=16 \cdot 4=64$ (which is a whole square. Is it a coincidence?)
Definition 5.6. A geometric progression is a sequence satisfying $a_{n+1} / a_{n}=r$, where $r \neq 0$ is constant for a given progression called the common ratio. The geometric progression with an initial term $a \neq 0$ and a common ratio r is $a, a r, a r^{2}, a r^{3}, \ldots$, i.e. $a_{n}=a \cdot r^{n-1}$.
Examples: $\left\{2^{n}\right\}$ (here $a=1, r=2$), $\quad\left\{2^{-n}\right\}$ (here $a=1, r=\frac{1}{2}$),
$1,-1,1,-1,1,-1, \ldots=\left\{(-1)^{n}\right\}$ (here $a=1, r=-1$),
$\left\{n^{2}\right\}$ (sorry, it is not a geometric progression, since $3^{2} / 2^{2}=2 \frac{1}{4} \neq 4=2^{2} / 1^{2}$).
Theorem 5.7. The sum $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$ of the first n terms of a geometric progression with common ratio $r \neq 1$ is $S_{n}=\left(a_{n+1}-a_{1}\right) /(r-1)$. If $r=1$ then $S_{n}=n a$.
Proof. Let us first evaluate the sum a simple geometric progression $1+r+r^{2}+\ldots+r^{n-1}$ where $r \neq 1$. Multiply this sum by $(1-r)$:

$$
\left(1+r+r^{2}+\ldots+r^{n-1}\right) \cdot(1-r)=1+r+r^{2}+\ldots+r^{n-1}-r-r^{2}-r^{3}-\ldots-r^{n-1}-r^{n} .
$$

In this long sum all the terms but the first and the last ones cancel (!), therefore it is equal to $1-r^{n}$, therefore

$$
\left(1+r+r^{2}+\ldots+r^{n-1}\right) \cdot(1-r)=1-r^{n}
$$

Divide both parts by $(1-r)$, which is not 0 , and conclude that

$$
1+r+r^{2}+\ldots+r^{n-1}=\left(1-r^{n}\right) /(1-r)=\left(r^{n}-1\right) /(r-1) .
$$

Let us now consider the general case: $S_{n}=a_{1}+a_{2}+\ldots+a_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}=$ $a\left(1+r+r^{2}+\ldots+r^{n-1}\right)=a\left(r^{n}-1\right) /(r-1)=\left(a_{n+1}-a_{1}\right) /(r-1)$.
Examples: $1+2+4+8+\ldots 2^{n}=\left(2^{n+1}-1\right) /(2-1)=2^{n+1}-1$,

$$
\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n}}=\left(\frac{1}{2^{n+1}}-\frac{1}{2}\right) /\left(\frac{1}{2}-1\right)=\left(\frac{1}{2}-\frac{1}{2^{n+1}}\right) /\left(1-\frac{1}{2}\right)=2\left(\frac{1}{2}-\frac{1}{2^{n+1}}\right)=1-\frac{1}{2^{n}}
$$

Definition 5.8. Double summation is a sum of a two-dimensional array $\left\{a_{i j}\right\}$:

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\left(a_{11}+a_{12}+\ldots+a_{1 n}\right)+\left(a_{21}+a_{22}+\ldots+a_{2 n}\right)+\ldots+\left(a_{m 1}+a_{m 2}+\ldots+a_{m n}\right)
$$

Example:

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{4}\left(i^{2}-j\right)=[(1-1)+(1-2)+(1-3)+(1-4)]+ \\
& {[(4-1)+(4-2)+(4-3)+(4-4)]+[(9-1)+(9-2)+(9-3)+(9-4)]=26}
\end{aligned}
$$

Homework assignments. (The first installment due Friday 02/09).
A. Section 1.7: 2, 10acf, 16b, 18cd
B. Find $S=1+3+5+\ldots+99$ using the summation formula for arithmetic progressions. Is S a whole square?

