1. Reading: K. Rosen Discrete Mathematics and Its Applications, 9.1, 9.2
2. The main message of this lecture:

Truth values $0(F A L S E)$ and $1(T R U E)$ together with the Boolean operations on them constitute a mathematical structure, called "Boolean algebra".

Definition 37.1. A Boolean algebra is a set B containing at least two distinct elements 0 and 1 , and having one unary operation - (complement) and two binary operations \vee (called: disjunction, sup, the least upper bound lub, Boolean addition) and \wedge (called: conjunction, inf, the greatest lower bound $g l b$, Boolean multiplication) satisfying the following properties

$$
\begin{array}{llll}
x \vee 0=x \\
x \wedge 1=x & \text { Identity Laws } & & x \vee \bar{x}=1 \\
& x \wedge \bar{x}=0 & \text { Domination Laws } \\
(x \vee y) \vee z=x \vee(y \vee z) \\
(x \wedge y) \wedge z=x \wedge(y \wedge z)
\end{array} \quad \text { Associative Laws } \quad \begin{array}{ll}
x \vee y=y \vee x & \\
\hline(x \wedge y=y \wedge x & \text { Commutative Laws }
\end{array}
$$

$$
\begin{aligned}
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \quad \text { Distributive Laws } \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \quad
\end{aligned}
$$

The distributivity property for the usual algebraic expressions is $a \cdot(b+c)=a \cdot b+a \cdot c$. Note that for Boolean algebras not only multiplication distributes through addition, but also vice versa.
Example 37.2. The minimal Boolean algebra is the 2-element Boolean algebra: $B=\{0,1\}$ with operations: Boolean complement $\overline{0}=1, \overline{1}=0$

Boolean addition (as \vee) $0+0=0,0+1=1+0=1+1=1$
Boolean multiplication (as \wedge) $0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$.
Example 37.3. The 4-element Boolean algebra: $B=P(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\}$. Here $0=\emptyset, 1=\{a, b\}, x \vee y=x \cup y$ (union), $x \wedge y=x \cap y$ (intersection), $\bar{x}=\{a, b\}-x$ (complement).

Theorem 37.4. For any Boolean algebra and any elements x, y in it:

1. $x \vee x=x, x \wedge x=x$
2. if $x \vee y=1$ and $x \wedge y=0$, then $y=\bar{x}$
3. $\overline{0}=1, \overline{1}=0$
4. $\overline{\bar{x}}=x$
5. de Morgan Laws: a) $\overline{(x \vee y)}=\bar{x} \wedge \bar{y}$, b) $\overline{(x \wedge y)}=\bar{x} \vee \bar{y}$.

Proof. 1. $x \vee x=(x \vee x) \wedge 1=(x \vee x) \wedge(x \vee \bar{x})=$ (by distributivity) $=x \vee(x \wedge \bar{x})=x \vee 0=x$, $x \wedge x=(x \wedge x) \vee 0=(x \wedge x) \vee(x \wedge \bar{x})=($ by distributivity $)=x \wedge(x \vee \bar{x})=x \wedge 1=x$
2. Suppose $x \vee y=1$ and $x \wedge y=0$. Multiply \bar{x} by both parts of the former and add \bar{x} to both parts of the latter: $\bar{x} \wedge(x \vee y)=\bar{x} \wedge 1=\bar{x}, \bar{x} \vee(x \wedge y)=\bar{x} \vee 0=\bar{x}$. By distributivity, $(\bar{x} \wedge x) \vee(\bar{x} \wedge y)=0 \vee(\bar{x} \wedge y)=\bar{x} \wedge y,(\bar{x} \vee x) \wedge(\bar{x} \vee y)=1 \wedge(\bar{x} \vee y)=\bar{x} \vee y$, thus $\bar{x} \wedge y=\bar{x}$ and $\bar{x} \vee y=\bar{x}$. Plug this expression for \bar{x} to $\bar{x} \vee y=\bar{x}:(\bar{x} \vee y) \wedge y=\bar{x}$. Therefore $(y \vee \bar{x}) \wedge(y \vee 0)=\bar{x}$. By distributivity, $y \vee(\bar{x} \wedge 0)=\bar{x}$, thus $y \vee 0=\bar{x}$ and $y=\bar{x}$.
3. By identity and commutativity, $0 \vee 1=1$ and $0 \wedge 1=0$. By $2,1=\overline{0}$. Likewise, $0=\overline{1}$.
4. By domination, $x \vee \bar{x}=1$ and $x \wedge \bar{x}=0$. By commutativity, $\bar{x} \vee x=1$ and $\bar{x} \wedge x=0$. By 2 (with x as y), $x=\overline{\bar{x}}$.

5a. Let $u=\bar{x} \wedge \bar{y}$. By 2, it suffices to show that $(x \vee y) \vee u=1$ and $(x \vee y) \wedge u=0$. Indeed, $(x \vee y) \vee u=(x \vee y) \vee(\bar{x} \wedge \bar{y})=x \vee[y \vee(\bar{x} \wedge \bar{y})]=x \vee[(y \vee \bar{x}) \wedge(y \vee \bar{y})]=x \vee[(y \vee \bar{x}) \wedge 1]=$ $x \vee(y \vee \bar{x})=x \vee(\bar{x} \vee y)=(x \vee \bar{x}) \vee y=1 \vee y=1$. 5 b is similar to 5 a .
Example 37.5. There is no 3-element boolean algebra. Indeed, suppose $B=\{0,1, \alpha\}$. Take $\bar{\alpha}$. Then there are three possibilities $\bar{\alpha}=0, \bar{\alpha}=1$, or $\bar{\alpha}=\alpha$. In the first case $\alpha=\overline{\bar{\alpha}}=\overline{0}=1$. In the second case $\alpha=\overline{\bar{\alpha}}=\overline{1}=0$. In the third case $\alpha=\alpha \vee \alpha=\alpha \vee \bar{\alpha}=1$ (Likewise, one can show that $\alpha=0$. This consideration demonstrates that no boolean algebra has self-dual elements, i.e. such x 's that $x=\bar{x})$.
Theorem 37.6. Each finite Boolean algebra is isomorphic to the power set $P(X)$ with set theoretical operations for an appropriate finite set X.
Proof. Yet another bonus problem.
Definition 37.7. A Boolean function of degree n is a function from $\{0,1\}^{n}$ to $\{0,1\}$.
As we know, there are $2^{2^{n}}$ Boolean functions of degree n.
Definition 37.8. Boolean expressions in the variables $x_{1}, x_{2}, \ldots, x_{n}$ are defined recursively as follows:
$0,1, x_{1}, x_{2}, \ldots, x_{n}$ are Boolean expressions
if U and V are Boolean expressions, then $\bar{U},(U \cdot V)$ and $(U+V)$ are Boolean expressions. As usual, we will freely use variables other then $x_{1}, x_{2}, \ldots, x_{n}$, and omit "." and excessive parentheses whenever unambiguous. Examples of Boolean expressions: $1+x \bar{y}, x y z+\bar{x}$.

Definition 37.9. The dual of a Boolean expression is obtained by interchanging sums and products and interchanging 0 and 1 . For example, the dual of $x \bar{y}+1$ is $(x+\bar{y}) \cdot 0$ Duality principle: the Boolean identity remains valid when both sides are replaced by their duals.
Each Boolean expression in the variables $x_{1}, x_{2}, \ldots, x_{n}$ represents a Boolean function of degree n. The converse is also true.
Theorem 37.10. (Functional completeness of Boolean expressions) Every Boolean function can be represented as a Boolean expression
Proof. Good old Disjunctive Normal Forms (a.k.a. sum-of-products expansion and Conjunctive Normal Form (a.k.a. product-of-sums expansion) from lecture 1.
Example 37.11. Let $f(1,0,1)=f(0,0,1)=1$ and $f(x, y, z)=0$ for all other triples (x, y, z). To find a Boolean expression for f we first build minterms, i.e. products of variables or their complements for the triples of arguments where f is equal to $1: x \bar{y} z$ and $\overline{x y} z$. Each of those midterms is 1 only on the corresponding triple of arguments. Finally, the desired expression is the sum of midterms: $f(x, y, z)=x \bar{y} z+\overline{x y} z$.
Example 37.12. Let now $f(1,0,1)=f(0,0,1)=0$ and $f(x, y, z)=1$ for all other triples (x, y, z). Since there are less 0 's then 1's among the values of f, we'd better use the product-of-sums expansion. We build maxterms for each row that gives value $0: \bar{x}+y+\bar{z}$ and $x+y+\bar{z}$. Maxterms give 0 's only in those rows. Then we take the product of the maxterms: $f(x, y, z)=(\bar{x}+y+\bar{z})(x+y+\bar{z})$.
Homework assignments. (The second installment due Friday 05/04) 37A:Rosen9.1-6; 37B:Rosen9.1-20cd; 37C:Rosen9.2-4cd(sum-of-products and product-of-sums).

