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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 9.1, 9.2

2. The main message of this lecture:

Truth values 0(FALSE) and 1(TRUE) together with the Boolean op-
erations on them constitute a mathematical structure, called “Boolean
algebra”.

Definition 37.1. A Boolean algebra is a set B containing at least two distinct elements 0
and 1, and having one unary operation (complement) and two binary operations ∨ (called:
disjunction, sup, the least upper bound lub, Boolean addition) and ∧ (called: conjunction, inf,
the greatest lower bound glb, Boolean multiplication) satisfying the following properties

x ∨ 0 = x
x ∧ 1 = x

Identity Laws
x ∨ x = 1
x ∧ x = 0

Domination Laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

Associative Laws
x ∨ y = y ∨ x
x ∧ y = y ∧ x

Commutative Laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Distributive Laws

The distributivity property for the usual algebraic expressions is a·(b+c) = a·b+a·c. Note that
for Boolean algebras not only multiplication distributes through addition, but also vice versa.

Example 37.2. The minimal Boolean algebra is the 2-element Boolean algebra: B = {0, 1}
with operations: Boolean complement 0 = 1, 1 = 0

Boolean addition (as ∨) 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1
Boolean multiplication (as ∧) 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Example 37.3. The 4-element Boolean algebra: B = P ({a, b}) = {∅, {a}, {b}, {a, b}}. Here
0 = ∅, 1 = {a, b}, x∨y = x∪y (union), x∧y = x∩y (intersection), x={a, b}−x (complement).

Theorem 37.4. For any Boolean algebra and any elements x,y in it:
1. x ∨ x = x, x ∧ x = x
2. if x ∨ y = 1 and x ∧ y = 0, then y = x
3. 0 = 1, 1 = 0
4. x = x
5. de Morgan Laws: a) (x ∨ y) = x ∧ y, b) (x ∧ y) = x ∨ y.

Proof. 1. x∨x = (x∨x)∧1 = (x∨x)∧ (x∨x) = (by distributivity) = x∨ (x∧x) = x∨0 = x,
x ∧ x = (x ∧ x) ∨ 0 = (x ∧ x) ∨ (x ∧ x) = (by distributivity) = x ∧ (x ∨ x) = x ∧ 1 = x

2. Suppose x ∨ y = 1 and x ∧ y = 0. Multiply x by both parts of the former and add x to
both parts of the latter: x ∧ (x ∨ y) = x ∧ 1 = x, x ∨ (x ∧ y) = x ∨ 0 = x. By distributivity,
(x∧x)∨ (x∧ y) = 0∨ (x∧ y) = x∧ y, (x∨x)∧ (x∨ y) = 1∧ (x∨ y) = x∨ y, thus x∧ y = x and
x∨y = x. Plug this expression for x to x∨y = x: (x∨y)∧y = x. Therefore (y∨x)∧(y∨0) = x.
By distributivity, y ∨ (x ∧ 0) = x, thus y ∨ 0 = x and y = x.



3. By identity and commutativity, 0 ∨ 1 = 1 and 0 ∧ 1 = 0. By 2, 1 = 0. Likewise, 0 = 1.
4. By domination, x ∨ x = 1 and x ∧ x = 0. By commutativity, x ∨ x = 1 and x ∧ x = 0.

By 2 (with x as y), x = x.
5a. Let u = x∧ y. By 2, it suffices to show that (x∨ y)∨u = 1 and (x∨ y)∧u = 0. Indeed,

(x ∨ y) ∨ u = (x ∨ y) ∨ (x ∧ y) = x ∨ [y ∨ (x ∧ y)] = x ∨ [(y ∨ x) ∧ (y ∨ y)] = x ∨ [(y ∨ x) ∧ 1] =
x ∨ (y ∨ x) = x ∨ (x ∨ y) = (x ∨ x) ∨ y = 1 ∨ y = 1. 5b is similar to 5a.

Example 37.5. There is no 3-element boolean algebra. Indeed, suppose B = {0, 1, α}. Take
α. Then there are three possibilities α = 0, α = 1, or α = α. In the first case α = α = 0 = 1.
In the second case α = α = 1 = 0. In the third case α = α ∨ α = α ∨ α = 1 (Likewise, one
can show that α = 0. This consideration demonstrates that no boolean algebra has self-dual
elements, i.e. such x’s that x = x).

Theorem 37.6. Each finite Boolean algebra is isomorphic to the power set P (X) with set
theoretical operations for an appropriate finite set X.
Proof. Yet another bonus problem.

Definition 37.7. A Boolean function of degree n is a function from {0, 1}n to {0, 1}.
As we know, there are 22n

Boolean functions of degree n.

Definition 37.8. Boolean expressions in the variables x1, x2, . . . , xn are defined recursively
as follows:

0, 1, x1, x2, . . . , xn are Boolean expressions
if U and V are Boolean expressions, then U , (U · V ) and (U + V ) are Boolean expressions.

As usual, we will freely use variables other then x1, x2, . . . , xn, and omit “·” and excessive
parentheses whenever unambiguous. Examples of Boolean expressions: 1 + xy, xyz + x.

Definition 37.9. The dual of a Boolean expression is obtained by interchanging sums and
products and interchanging 0 and 1. For example, the dual of xy + 1 is (x + y) · 0 Duality
principle: the Boolean identity remains valid when both sides are replaced by their duals.

Each Boolean expression in the variables x1, x2, . . . , xn represents a Boolean function of degree
n. The converse is also true.

Theorem 37.10. (Functional completeness of Boolean expressions) Every Boolean function
can be represented as a Boolean expression
Proof. Good old Disjunctive Normal Forms (a.k.a. sum-of-products expansion and Con-
junctive Normal Form (a.k.a. product-of-sums expansion) from lecture 1.

Example 37.11. Let f(1, 0, 1) = f(0, 0, 1) = 1 and f(x, y, z) = 0 for all other triples (x, y, z).
To find a Boolean expression for f we first build minterms, i.e. products of variables or their
complements for the triples of arguments where f is equal to 1: xyz and xyz. Each of those
midterms is 1 only on the corresponding triple of arguments. Finally, the desired expression is
the sum of midterms: f(x, y, z) = xyz + xyz.

Example 37.12. Let now f(1, 0, 1) = f(0, 0, 1) = 0 and f(x, y, z) = 1 for all other triples
(x, y, z). Since there are less 0’s then 1’s among the values of f , we’d better use the product-
of-sums expansion. We build maxterms for each row that gives value 0: x + y + z and
x + y + z. Maxterms give 0’s only in those rows. Then we take the product of the maxterms:
f(x, y, z) = (x + y + z)(x + y + z).

Homework assignments. (The second installment due Friday 05/04) 37A:Rosen9.1-6;
37B:Rosen9.1-20cd; 37C:Rosen9.2-4cd(sum-of-products and product-of-sums).


