CS280, Spring 2001 Handout 37
April 27, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 9.1, 9.2

2. The main message of this lecture:

Truth values 0(FALSE) and 1(TRUE) together with the Boolean op-
erations on them constitute a mathematical structure, called “Boolean
algebra”.

Definition 37.1. A Boolean algebra is a set B containing at least two distinct elements 0
and 1, and having one unary operation — (complement) and two binary operations V (called:
disjunction, sup, the least upper bound lub, Boolean addition) and A (called: conjunction, inf,
the greatest lower bound glb, Boolean multiplication) satisfying the following properties

V0= . vz=1 . .
rv0=u Identity Laws * f Domination Laws
T AN1l=x AT =0

=xV V .. Vy=1yV .
(@Vy)ve=azV(yVe) Associative Laws TVy=yvae Commutative Laws
(xANY)ANz=xAN(YAz) TANy=yAz

Distributive Laws

The distributivity property for the usual algebraic expressions is a-(b+c) = a-b+a-c. Note that
for Boolean algebras not only multiplication distributes through addition, but also vice versa.

Example 37.2. The minimal Boolean algebra is the 2-element Boolean algebra: B = {0,1}
with operations: Boolean complement 0 =1, 1 =0
Boolean addition (as V) 0+0=0,0+1=14+0=1+1=1
Boolean multiplication (as A) 0-0=0-1=1-0=0,1-1=1.
)

Example 37.3. The 4-element Boolean algebra: B = P({a,b}) =
0=0,1={a,b}, zVy =xUy (union), z Ay = xNy (intersection), T

{0,{a},{b},{a,b}}. Here

{a,b} —z (complement).

Theorem 37.4. For any Boolean algebra and any elements x,y in it:

l.zxVx=x,zNx==x

2.¢fxVy=1landxANy=0, theny=72

3.0=1,1=0

4. T=x

5. de Morgan Laws: a) (xVy) =T A7y, b) (xANy) =T V7.
Proof. 1. xVz = (xVa)A1l= (zVx)A(xVT) = (by distributivity) = 2V (z AT) =z V0 = z,
zANx=(xANx)V0=(zAz)V(xAT)=(by distributivity) =2z A (zVZ) =2 Al =2z

2. Suppose zVy =1 and z Ay = 0. Multiply T by both parts of the former and add T to
both parts of the latter: ZA (zVy) =TA1=7,TV (xAy) =7V 0 =7. By distributivity,
ZAz)V(ZAY) =0V (ZTAYy)=TAy, TVZ)AN(TVyYy) =1AN(TVy) =T Vy, thusTAy =T and
TVy = Z. Plug this expression for T to TVy = T: (TVy)Ay = T. Therefore (yVT)A(yV0) = T.
By distributivity, y V (ZA0) =T, thus y V0 =7 and y = T.




3. By identity and commutativity, 0V1=1and 0A1=0. By 2, 1 =0. Likewise, 0 = 1.

4. By domination, x VZ = 1 and x AT = 0. By commutativity, TVax =1and T Az = 0.
By 2 (with z as y), x = T.

ba. Let u =T A7y. By 2, it suffices to show that (xVy)Vu =1 and (xVy) Au=0. Indeed,
@Vy)Vu=(xVy) V@AY =aV[yVE@AY]=zV[yVZ)A(yVY)]=aV[yVT)Al]=
xV(yvVz)=zV(@Vy =(@xVT)Vy=1Vy=1. 5bis similar to ba.

Example 37.5. There is no 3-element boolean algebra. Indeed, suppose B = {0,1, a}. Take
@. Then there are three possibilities @ =0, @ = 1, or @ = . In the first case a =a =0 = 1.
In the second case « = @ = 1 = 0. In the third case « = aVa = aVa = 1 (Likewise, one
can show that o = 0. This consideration demonstrates that no boolean algebra has self-dual
elements, i.e. such z’s that x = ).

Theorem 37.6. FEach finite Boolean algebra is isomorphic to the power set P(X) with set
theoretical operations for an appropriate finite set X.
Proof. Yet another bonus problem.

Definition 37.7. A Boolean function of degree n is a function from {0,1}" to {0, 1}.
As we know, there are 22" Boolean functions of degree n.

Definition 37.8. Boolean expressions in the variables x1, s, ..., z, are defined recursively
as follows:

0,1,x1,x9,...,x, are Boolean expressions

if U and V are Boolean expressions, then U, (U - V) and (U + V) are Boolean expressions.
As usual, we will freely use variables other then zq,xs,...,2,, and omit “” and excessive
parentheses whenever unambiguous. Examples of Boolean expressions: 1+ x7, xyz + T.

Definition 37.9. The dual of a Boolean expression is obtained by interchanging sums and
products and interchanging 0 and 1. For example, the dual of 27 + 1 is (x + 7) - 0 Duality
principle: the Boolean identity remains valid when both sides are replaced by their duals.

Each Boolean expression in the variables x1, s, ..., x, represents a Boolean function of degree
n. The converse is also true.

Theorem 37.10. (Functional completeness of Boolean expressions) Fvery Boolean function
can be represented as a Boolean expression

Proof. Good old Disjunctive Normal Forms (a.k.a. sum-of-products expansion and Con-
junctive Normal Form (a.k.a. product-of-sums expansion) from lecture 1.

Example 37.11. Let f(1,0,1) = f(0,0,1) =1 and f(z,y, z) = 0 for all other triples (z,y, 2).
To find a Boolean expression for f we first build minterms, i.e. products of variables or their
complements for the triples of arguments where f is equal to 1: zyz and Tyz. Each of those
midterms is 1 only on the corresponding triple of arguments. Finally, the desired expression is
the sum of midterms: f(x,y,z) = 27z + Tyz.

Example 37.12. Let now f(1,0,1) = f(0,0,1) = 0 and f(z,y,2) = 1 for all other triples
(z,y,z). Since there are less 0’s then 1’s among the values of f, we’d better use the product-
of-sums expansion. We build maxterms for each row that gives value 0: = + y + Z and
x4+ y + Z. Maxterms give 0’s only in those rows. Then we take the product of the maxterms:
flz,y,2) =@T+y+2)(x+y+72).

Homework assignments. (The second installment due Friday 05/04) 37A:Rosen9.1-6;
37B:Rosen9.1-20cd; 37C:Rosen9.2-4cd(sum-of-products and product-of-sums).



