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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 7.7, 7.8

2. The main message of this lecture:

Planar graphs and coloring provide two extreme examples of prob-
lems in mathematics. The former admits a complete and elegant
human made theory spanning from the 18th to the early 20th cen-
turies. The latter produced the first example of a computer solution
of a top rated problem in theoretical mathematics: the four color
problem. Note that despite continuous efforts no human proof of
this problem has been discovered yet.

Definition 33.1. A graph is called planar if it can be drawn in the plane without any edge
crossing. A more strict mathematical definition not based on a vague notion of “drawing” is
too tedious to work with. Besides, our intuition of planarity is so clear that in a practical sense
we do not need a more formal definition. Examples: K4 is planar though its usual picture
as a square with diagonals does not look planar: it can be made one by drawing one of the
diagonals outside the square (cf. the slides). Another good example of a planar graph is Q3:
its standard visualization is a 3D cube, whereas its clearly admits a planar representation as
well (slides!).

Example 33.2. The standard example of a non-planar graph is called “three houses three
utilities”. Speaking mathematically, it is a complete bipartite graph K3,3, where the first
partition set represents three houses, the second one three utilities (gas, water, electricity) and
edges are connecting utility lines which we do not want to intersect. Unfortunately for the
utility engineers K3,3 is not planar (slides!), therefore there is no a planar connection scheme
without edges crossing.

Theorem 33.3. (Euler’s formula) In a simple connected planar graph G let e be the number
of edges, v the number v of vertices, and r the number of regions the graph split the plane into.
Then r = e − v + 2.
Proof. Induction on the number e of edges in G.
BASE. e = 1, i.e. G = K2. Then v = 2, r = 1, which yields e − v + 2 = 1− 2 + 2 = 1 = r.
INDUCTION HYPOTHESIS. The formula r = e− v+2 holds for any graph of the above kind
having e = n edges.
INDUCTION STEP. Consider a graph G of the above kind having e = n + 1 edges. Remove
one edge (and possibly a vertex) without violating the connectivity property by the following
procedure. Pick a path P in G of maximum possible length without repeating edges. Since G
is finite, the path P either has a loop, or terminates in a suspended vertex. In the former case
remove an edge in a loop, in the latter remove the last edge and the last vertex (see slides).
The remaining graph G′ already has n edges and thus falls under the I.H.

Case A. Only an edge is removed. Then in e′ = e− 1, v′ = v, r′ = r − 1, since the removed
edge from a loop separated two distinct areas in a planar graph G (see slides). By the I.H.,
r′ = e′ − v′ + 2, thus r − 1 = (e − 1)− v + 2, and r = e − v + 2.

Case B. An edge and a vertex are removed. Then the removed edge was a dead end in G not
separating any regions. In this case e′ = e− 1, v′ = v − 1, r′ = r. By the I.H., r′ = e′ − v′ + 2,
thus r = (e − 1)− (v − 1) + 2, and r = e − v + 2.



Example 33.4. In K3: r = 2, e = v = 3, e − v + 2 = 3− 2 + 2 = 2 = r. In K4: r = 4, e = 6,
v = 4, e − v + 2 = 6 − 4 + 2 = 4 = r. In K5: v = 5, e = 10, r = . . . Oops, this graph is not
planar!. Below you can find a proof of this fact.

Corollary 33.5. (A useful test of non-planarity. Its power is based on the fact that it relates
the number of edges and the number of vertices without involving the number of regions which
might not exist) In a connected simple planar graph with the number of vertices v ≥ 3 the
following inequality holds: e ≤ 3v − 6.
Proof. Walk along the boundary of any region R one counting the number of edges passed.
The resulting number is called the degree of R. Note that dead-ends inside R and similar
edged contribute 2 to the degree! (see slides). Clearly, the degree of each region (including
the unbounded one) is at least 3. Therefore, The sum S of degrees over all regions is at least
3r. On the other hand S = 2e, since every edge is traversed and counted in S exactly twice.
Therefore 2e = S ≥ 3r. By Euler’s formula, 2e ≥ 3(e − v + 2). Hence 2e ≥ 3e − 3v + 6, and
e ≤ 3v − 6.

Examples 33.6. K5 is not planar: v = 5, e = 10, 3v − 6 = 15− 6 = 9 < 10 = e. Proving that
K3,3 is not planar required another effort of the same kind (see 7.7 in the book).

Theorem 33.7. (Kuratowski’s theorem providing the ultimate criterion of planarity) A graph
is non-planar if and only if it contains either K3,3 or K5.
Comments. (instead of a proof). Here “contains” means “contains a subgraph homeomorphic
to”. In turn, “G′ is homeomorphic to G′′” means “G′ and G′′ are obtained from the same G
by adding new vertices on already existing edges (see slides).

Bonus problem 33.8. Is Q4 planar? Submit solutions in written to the instructor.

Definition 33.9. A coloring of a simple graph is the assignment of a color to each vertex so
that no two adjacent ones get the same color. The chromatic number of a graph is the least
number of colors needed for its coloring.

Examples 33.10. Scheduling problem reduces to coloring. How many time slots are needed
to schedule the finals so that no student has two exams in the same time? Consider a graph
whose vertices represent courses, and two vertices are connected by an edge if they have some
students in common. Then the time slots can be represented by colors, and the number of time
slots needed is exactly the chromatic number of the resulting graph.

Examples 33.11. The chromatic number of Kn is n, since every two vertices are adjacent
and thus have to be colored differently. The chromatic number of Km,n is 2 (and thus does not
depend on m,n. Indeed, paint all the elements of the partition set one red, and all elements of
the partition set two blue.

Theorem 33.12. A chromatic number of a planar graph is no greater than four.
This was one of the most famous problems in mathematics, standing since the 1850s with quite
a history of fallacious proofs. It was finally proved in 1979 by Appel and Haken using about
1000 hours of a powerful computer time to perform an exhausting search at the final stage of
the proof. No human proof of this problem has been found yet.

Homework assignments. (The first installment due Friday 04/27)

33A:Rosen7.7-4; 33B:Rosen7.7-6; 33C:Rosen7.7-12 33D:Rosen7.7-18 33E:Rosen7.8-4
33F:Rosen7.8-16.


