1. Reading: K. Rosen Discrete Mathematics and Its Applications, 7.6
2. The main message of this lecture:

Finding the shortest path in a graph is based on an elementary and thus universal principle: every segment of an optimal process is also optimal.

Definition 32.1. Yet another type of graphs: weighted graph is a graph (simple, muti..., pseudo..., directed) with a number assigned to each edge. The length of a path in a weighted graph is the sum of the weights of the edges of this path. The shortest path between two given vertices is the path of least length between them.

We may assume that the shortest path is a graph never visits the same vertex twice, since otherwise one could make this path even shorter by skipping the cycle. A raw upper bound for the number of all possible paths between two given vertices is about n !, where n is a total number of vertices in a graph. For example, in the complete graph K_{n} the number of Hamilton paths only between two distinct vertices is $(n-2)!$. Indeed, there are $n-2$ choices for the first step, $n-3$ for the second, etc. Therefore, the exhaustive search of all possible paths and comparing its lengths cannot be regarded as a general algorithm. However, using a very basic observation that every initial segment from a to b of the shortest path from a to c is itself the shortest path (between a and b) we can reduce the search dramatically.

Definition 32.2. The following Dijkstra's algorithm finds the length of a shortest path in a connected simple weighted graph G with vertices $v_{1}, v_{2}, \ldots, v_{n}$, and weights $w(u, v)$ between vertices u and v. If u and v are not connected then $w(u, v)=\infty$. The algorithm relies on a series of iterations of adding a labeled vertex to a set S of distinguished vertices. The labels of a vertices in S do not change and they represent the shortest distance between a given vertex and the origin a. Labels of vertices outside S are recalculated
in every loop. The algorithm terminates when the target vertex z is captured by S.

$$
\begin{aligned}
& \text { for } i:=1 \text { to } n \\
& \quad L\left(v_{i}\right)=\infty \\
& L(a)=0 \\
& S=\emptyset \\
& \text { while } z \notin S \\
& \text { begin } \\
& \quad u:=\text { a vertex not in } S \text { with the minimal label } \\
& \quad S:=S \cup\{u\} \\
& \quad \text { for all vertices } v \text { not in } S \\
& \quad \text { if } L(u)+w(u, v)<L(v) \text { then } L(v):=L(u)+w(u, v) \\
& \text { end }(L(z)=\text { length of shortest path from } a \text { to } z) \text {. }
\end{aligned}
$$

Example 32.3. Cf. lecture slides and the book.
Theorem 32.3. Dijkstra's algorithm finds the length of a shortest path between two vertices in a connected simple undirected graph.

Proof. By induction on the number of iterations made we prove the following assertion $A(k)$: "after k iterations the set $S=S_{k}$ satisfies

1) the label of $v \in S_{k}$ is the length of the shortest path from a to v
2) the label of $v \notin S_{k}$ is the length of the shortest path from a to v that contains only (besides v) vertices in S_{k}.
BASE. $k=0$. i.e. before any iteration is carry out. Then both 1) and 2) hold since $S_{0}=\emptyset$ and there is no vertices in S_{0} (covers 1.) and no paths in S_{0} (covers 2.).
INDUCTION HYPOTHESIS. After k iterations both 1) and 2) hold.
INDUCTION STEP. Let u be a vertex added to S_{k} at the $(k+1)$ st iteration. This means u has the least label among vertices not in S_{k}. We have to establish that both 1) and 2) hold for S_{k+1}.

For 1) it suffices to check u since all the old labels in S_{k} have not changed. Suppose the opposite, i.e. that there is a path P from a to u shorter then $L(u)$. This path P cannot be in S_{k} only, since then, by the I.H. 2) and by the choice of u, this u is the closest to a. The path P cannot contain vertices not from S_{k} either, since the first such vertex in P would have a lesser label than u and would be added to S_{k} instead.

Checking 2). Pick any $x \notin S_{k+1}$, and consider the shortest path P in S_{k+1} from a to x. There are two possibilities. Case A: this path P does not contain u. Then, by the I.H. 1), P is the shortest path in S_{k} from a to x. By the description of step $k+1$, the label $L(x)$ has not changed, thus $L(x)$ remains the length of the shortest path in S_{k+1} from a to x. Case B. The shortest path P from a to x in S_{k+1} contains u. Then P consists of the interval from a to u of the shortest possible length followed by the edge from u to x (show why P cannot make any more steps between u and $x!$). Then the length of P is $L(u)+w(u, x)$, which is exactly the $L(x)$ after $(k+1)$ st iteration.
Theorem 32.4. The computational complexity of Dijkstra's algorithm is $O\left(n^{2}\right)$ comparisons and additions, where n is the number of vertices in the original graph.
Proof. Number of iterations $n-1$. Identifying the vertex not in S with the smallest label takes $n-1$ comparisons. Updating the label of each vertex not in S takes 2(n-1) additions and comparisons, thus the total number of additions and comparisons in each iteration is not more then $3(n-1)$.
Definition 32.5. The traveling salesman problem is to find the shortest Hamilton circuit in a weighted, complete undirected graph.

This is a famous $N P$-complete problem.
Homework assignments. (The third installment due Friday 04/20)
32A:Rosen7.6-8d; 32B:Rosen7.6-14(Miami-LA); 32C:Rosen7.6-18.

