
CS280, Spring 2001 Handout 32
April 16, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 7.6

2. The main message of this lecture:

Finding the shortest path in a graph is based on an ele-
mentary and thus universal principle: every segment of
an optimal process is also optimal.

Definition 32.1. Yet another type of graphs: weighted graph is a graph (simple, muti. . .,
pseudo. . ., directed) with a number assigned to each edge. The length of a path in a weighted
graph is the sum of the weights of the edges of this path. The shortest path between two
given vertices is the path of least length between them.

We may assume that the shortest path is a graph never visits the same vertex twice, since
otherwise one could make this path even shorter by skipping the cycle. A raw upper bound
for the number of all possible paths between two given vertices is about n!, where n is a total
number of vertices in a graph. For example, in the complete graph Kn the number of Hamilton
paths only between two distinct vertices is (n − 2)!. Indeed, there are n − 2 choices for the
first step, n − 3 for the second, etc. Therefore, the exhaustive search of all possible paths and
comparing its lengths cannot be regarded as a general algorithm. However, using a very basic
observation that every initial segment from a to b of the shortest path from a to c is itself the
shortest path (between a and b) we can reduce the search dramatically.

Definition 32.2. The following Dijkstra‘s algorithm finds the length of a shortest path in
a connected simple weighted graph G with vertices v1, v2, . . . , vn, and weights w(u, v) between
vertices u and v. If u and v are not connected then w(u, v) = ∞. The algorithm relies on a
series of iterations of adding a labeled vertex to a set S of distinguished vertices. The labels of
a vertices in S do not change and they represent the shortest distance between a given vertex
and the origin a. Labels of vertices outside S are recalculated

in every loop. The algorithm terminates when the target vertex z is captured by S.
for i := 1 to n

L(vi) =∞
L(a) = 0
S = ∅
while z �∈ S
begin

u := a vertex not in S with the minimal label
S := S ∪ {u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
end (L(z)=length of shortest path from a to z).

Example 32.3. Cf. lecture slides and the book.

Theorem 32.3. Dijkstra’s algorithm finds the length of a shortest path between two vertices
in a connected simple undirected graph.



Proof. By induction on the number of iterations made we prove the following assertion
A(k): “after k iterations the set S = Sk satisfies

1) the label of v ∈ Sk is the length of the shortest path from a to v
2) the label of v �∈ Sk is the length of the shortest path from a to v that contains only

(besides v) vertices in Sk.
BASE. k = 0. i.e. before any iteration is carry out. Then both 1) and 2) hold since S0 = ∅
and there is no vertices in S0 (covers 1.) and no paths in S0 (covers 2.).
INDUCTION HYPOTHESIS. After k iterations both 1) and 2) hold.
INDUCTION STEP. Let u be a vertex added to Sk at the (k + 1)st iteration. This means u
has the least label among vertices not in Sk. We have to establish that both 1) and 2) hold for
Sk+1.

For 1) it suffices to check u since all the old labels in Sk have not changed. Suppose the
opposite, i.e. that there is a path P from a to u shorter then L(u). This path P cannot be in
Sk only, since then, by the I.H. 2) and by the choice of u, this u is the closest to a. The path P
cannot contain vertices not from Sk either, since the first such vertex in P would have a lesser
label than u and would be added to Sk instead.

Checking 2). Pick any x �∈ Sk+1, and consider the shortest path P in Sk+1 from a to x.
There are two possibilities. Case A: this path P does not contain u. Then, by the I.H. 1), P
is the shortest path in Sk from a to x. By the description of step k+1, the label L(x) has not
changed, thus L(x) remains the length of the shortest path in Sk+1 from a to x. Case B. The
shortest path P from a to x in Sk+1 contains u. Then P consists of the interval from a to u of
the shortest possible length followed by the edge from u to x (show why P cannot make any
more steps between u and x!). Then the length of P is L(u) + w(u, x), which is exactly the
L(x) after (k + 1)st iteration.

Theorem 32.4. The computational complexity of Dijkstra’s algorithm is O(n2) comparisons
and additions, where n is the number of vertices in the original graph.
Proof. Number of iterations n − 1. Identifying the vertex not in S with the smallest label
takes n − 1 comparisons. Updating the label of each vertex not in S takes 2(n − 1) additions
and comparisons, thus the total number of additions and comparisons in each iteration is not
more then 3(n − 1).
Definition 32.5. The traveling salesman problem is to find the shortest Hamilton circuit
in a weighted, complete undirected graph.

This is a famous NP-complete problem.

Homework assignments. (The third installment due Friday 04/20)

32A:Rosen7.6-8d; 32B:Rosen7.6-14(Miami-LA); 32C:Rosen7.6-18.


