1. Reading: K. Rosen Discrete Mathematics and Its Applications, 7.3
2. The main message of this lecture:

Matrices are a universal mechanism of representing graphs.

Definition 30.1. Let G be a finite graph or any kind (simple graph, multigraph, pseudograph, both directed or undirected) with the set of vertices $V=\left\{v_{1}, v_{2} \ldots, v_{n}\right\}$. The adjacency matrix A_{G} of $G=(V, E)$ is an $n \times n$ matrix $\left[a_{i j}\right]$ whose entries $a_{i j}$ are the number of edges going from v_{i} to v_{j}. The convention is that an undirected edge $\left\{v_{i}, v_{j}\right\}$ counts both as going from v_{i} to v_{j} and as going from v_{j} to v_{i}.
It is immediate that the entries of an adjacency matrix are nonnegative integers. In the case of simple graph G the adjacency matrix A_{G} is a bit matrix with the entries

$$
a_{i j}= \begin{cases}1, & \text { if there }\left\{v_{i}, v_{j}\right\} \text { is an edge } \\ 0, & \text { otherwise }\end{cases}
$$

Moreover, the diagonal entries $a_{i i}=0$ for all $i=1,2, \ldots, n$ (reflecting the fact that G has no loops), and A_{G} is symmetric, i.e. $a_{i j}=a_{j i}$ (since $\left\{v_{i}, v_{j}\right\}=\left\{v_{j}=v_{i}\right\}$.
Example 30.2. The adjacency matrix of the cycle C_{3} is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

For a multigraph G (parallel edges are allowed) the entries of the adjacency matrix may be any nonnegative integer, but the diagonals are still 0 's and A_{G} is still symmetric. For a pseudograph G the diagonal entries are not necessarily zero, but A_{G} is still symmetric. For a directed graph the symmetry of A_{G} is no longer required.
Example 30.3. Draw a (directed ...)graph G having the adjacency matrix A_{G} below:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \text { (the answer is on lecture slides) }
$$

Definition 30.4. Adjacency list of a graph G without multiple edges is the list specifying the vertices that are adjacent to each vertex of G. For example, the following adjacency matrix and adjacency list represent the same directed graph

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \frac{\text { Initial Vertex }}{a} \begin{array}{cc}
\text { Terminal Vertices } \\
a, b, c \\
b & a, c \\
c & b, c
\end{array}
$$

Adjacency lists are practical for sparse adjacency matrices, that is, matrices with few nonzero entries.

Definition 30.5. Let G be a finite undirected graph (multigraph, pseudograph) with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, \ldots, e_{m}$. The incidence matrix of G is a bit $n \times m$ matrix [$m_{i j}$] with the entries

$$
m_{i j}= \begin{cases}1, & \text { when edge } e_{j} \text { is incident with } v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Example 30.6. The following incidence matrix represents the wheel W_{4} :

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The next notion we have to discuss is the graph isomorphism. Before considering a formal definition below let us remember that there is a good intuition of the graph isomorphism: two graphs are isomorphic if renaming vertices (if necessary) of one of them can make it equal to the other. Example: the complete graph K_{4} with the vertices $a_{1}, a_{2}, a_{3}, a_{4}$ is isomorphic to the wheel W_{3} with the peripheral elements p_{1}, p_{2}, p_{3} and the center c. Here any renaming works, e.g. $a_{1} \mapsto p_{1}, a_{2} \mapsto p_{2}, a_{3} \mapsto p_{3}, a_{4} \mapsto c$. Another classical example: the cycle C_{5} and the 5 -star.
Definition 30.7. Two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one correspondence f between vertices of the two graphs that preserves the adjacency relationship: a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}.

Establishing isomorphism of graphs is a computational hard problem since there are n ! distinct one-to-one correspondences between two sets of vertices of cardinality n. However, there are some simple tricks that help establishing non-isomorphism of given graphs. The generic name for those tricks is invariants, i.e. the properties of graph that should be preserves under isomorphism, if any. Examples of those invariants for simple graphs are: the number of vertices, the number of edges, the set of possible degrees of vertices, the number of vertices having a given degree, etc.

Homework assignments. (The first installment due Friday 04/20)
30A:Rosen7.3-4; 30B:Rosen7.3-12; 30C:Rosen7.3-20; 30D:Rosen7.3-38; 30E:Rosen7.3-42.

