- 1. Reading: K. Rosen Discrete Mathematics and Its Applications, 6.5, 6.6
- 2. The main message of this lecture:

Equivalence relations, partial orderings.

Definition 28.1. An equivalence relation on a set A is reflexive, symmetric and transitive (binary) relation on A. Examples: a = b, $a \equiv b \pmod{m}$, a is a relative of b, etc.

Definition 28.2. Let R be an equivalence relation on A. For each $a \in A$ the **equivalence** class $[a]_R$ with respect to R is defined as the set of all elements of A that are R-equivalent to a: $[a]_R = \{b \mid (a,b) \in R\}$. Each such $b \in [a]_R$ is called a **representative** of the equivalence class $[a]_R$. Equivalence classes are all nonempty, since $a \in [a]_R$, by the reflexivity of R.

Examples: For the equality relation $[a]_{=} = \{a\}$, i.e. each equivalence class is a singleton $[2]_{=\text{mod }5} = \{\dots, -13, -8, -3, 2, 7, 12, 17, \dots\}$

Lemma 28.3. For each equivalence relation any two equivalence classes are either disjoint or coincide: $[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b].$

Proof. Suppose $[a] \cap [b] \neq \emptyset$ and take $c \in ([a] \cap [b])$. For such c we have both aRc and bRc. Since R is symmetric, cRb also holds. Since R is transitive, we conclude that aRb. It remains to show that aRb yields [a] = [b]. It suffices to check that $[a] \subseteq [b]$, since the second case $[b] \subseteq [a]$ has a similar justification. Let $d \in [a]$, i.e. dRa. Since aRb, by the transitivity of R, dRb, and therefore $d \in [b]$.

Definition 28.4. A partition of a set A is a collection of nonempty disjoint sets $\{A_i \mid i \in I\}$, such that

$$A = \bigcup_{i \in I} A_i$$

Theorem 28.5. Each equivalence relation R on A specifies a partition of A by the equivalence classes with respect to R. Conversely, given a partition $\{A_i \mid i \in I\}$ of A specifies an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

Proof. The equivalence classes with respect to R are disjoint, by Lemma 28.3. Moreover, they cover the whole of A, since every $a \in A$ belongs to it least one equivalence class $a \in [a]$. For part two consider an arbitrary partition $\{A_i \mid i \in I\}$ of A, and define the relation R by stipulating: $aRb \Leftrightarrow a$ and b belong to the same partition set. The relation R is obviously reflexive, and symmetric. Checking transitivity: let aRb and bRc. Then a and b are in some partition set A_i . Likewise, bRc yields b and c are in the same partition set A_i , therefore aRc.

Example 28.6. From an equivalence relation to a partition. Equivalence classes on the set of integers $\mathbf{Z} \pmod{3}$.

 $\begin{bmatrix} 0 \end{bmatrix} = \{ \dots, -9, -6, -3, 0, 3, 6, 9, \dots \} \\ \begin{bmatrix} 1 \end{bmatrix} = \{ \dots, -8, -5, -2, 1, 4, 7, 10, \dots \} \\ \begin{bmatrix} 2 \end{bmatrix} = \{ \dots, -7, -4, -1, 2, 5, 8, 11, \dots \}$ $\mathbf{Z} = \begin{bmatrix} 0 \end{bmatrix} \cup \begin{bmatrix} 1 \end{bmatrix} \cup \begin{bmatrix} 2 \end{bmatrix}.$

Example 28.7. From a partition to an equivalence relation. On the same set of integers **Z** consider a partition $\mathbf{Z} = \{\dots, -4, -3, -2, -1\} \cup \{0\} \cup \{1, 2, 3, 4, \dots\}$. The equivalence relation

~ induced by this partition is $a \sim b \iff a$ and b have the same sign. This example illustrates that equivalence classes not necessarily have "the same" number of elements.

Definition 28.8. A (binary) relation R on A is called **partial ordering** (or **partial order**), if R is reflexive, antisymmetric, and transitive. The pair (A, R) is then called a **partially ordered set** (**poset**, for short). Traditionally, partial orderings are denoted \leq , and used in the format $a \leq b$.

Examples: $a \leq b$ on integers, rationals, reals. $A \subseteq B$ on sets, n|m on positive integers. In the first of those examples any two elements are related one way or another: $a \leq b$ or $b \leq a$. This does not hold, however, for examples two and three.

Definition 28.9. In a partially ordered set S two elements a, b are **comparable** if either $a \leq b$ or $b \leq a$. A partial order (S, \leq) is a **linear order** (or **total order**), if every two elements of S are comparable. A linear order (S, \leq) is **well-ordered**, if every nonempty subset X of S has the least element: $a \in X$ such that $a \leq y$ for any $y \in X$.

Example 28.10. Linear orders: \leq on N, Z, Q, R, lexicographic order on strings from Z Partial orders which are not linear: \subseteq on sets, $(m, n) \preceq (m', n') \Leftrightarrow m \leq m'$ and $n \leq n'$ Well-orderings: $(\mathbf{Z}^+, \leq), \mathbf{Z}^+ \times \mathbf{Z}^+$ with lexicographic ordering Linear orderings which are not well ordered: (\mathbf{Z}, \leq)

Definition 28.11. Hasse diagrams for a poset S is a picture of S directed "upward" with all the redundant edges removed: loops, transitivity redundancies, arrows on edges (by arranging an initial vertex below its terminal vertex). Examples: see pictures from the textbook and from the slides.

Definition 28.12. Every ordering \leq has its natural irreflexive counterpart \prec defined as $a \prec b \iff a \leq b$ and $a \neq b$. An element $a \in S$ is a **maximal element** on a poset (S, \leq) if there is no $b \in S$ such that $a \prec b$. Likewise, $a \in S$ is a **minimal element** if there is no $b \in S$ such that $a \prec b$. Likewise, $a \in S$ is a **minimal element** if there is no $b \in S$ such that $a \prec b$. Likewise, $a \in S$ is a **minimal element** if there is no $b \in S$ such that $b \prec a$. An element $a \in S$ is the **greatest element** if $b \leq a$ for all $b \in S$; $a \in S$ is the **least element** if $a \leq b$ for all $b \in S$. It is immediate from the definitions that the greatest element (the least element) is unique, if any. It is also clear that the greatest element (the least element), if any, is a maximal (minimal) element.

Example 28.13. (\mathbf{Z}, \leq) has neither maximal or minimal elements, therefore, neither greatest nor least elements. (\mathbf{N}, \leq) has the least (therefore minimal) element 0, but no maximal elements. The set of all nontrivial subsets of $A = \{a, b, c\}$ (i.e. $X \subseteq A$ such that $X \neq \emptyset$ and $x \neq A$) ordered by inclusion \subseteq has three distinct minimal elements $\{a\}, \{b\}, \text{ and } \{c\}, \text{ and three distinct maximal elements } \{a, b\}, \{a, c\}, \text{ and } \{b, c\}$. The multiplicity of minimal (maximal) elements indicate that there are no greatest (least) elements there. Note that a minimal element is not necessarily the least element, even if this minimal one is unique!

Definition 28.14. Let (S, \preceq) be a poset and $A \subseteq S$. An element $s \in S$ is an **upper bound** for A if $a \preceq s$ for all $a \in A$. Likewise, s is a **lower bound** for A if $s \preceq a$ for all $a \in A$. The **least upper bound** for A (notation sup(A)) is the least element, if any, among all upper bounds for A. Likewise the **greatest lower bound** for A (notation inf(A)) is the greatest among all lower bounds for A. Examples: $\mathbf{Q} \subset \mathbf{R}$ has neither upper nor lower bounds. The set $D = \{r \in Q \mid r^2 < 2\}$ does not have sup in (\mathbf{Q}, \leq) , but has sup in (\mathbf{R}, \leq) : $sup(D) = \sqrt{2}$.

Homework assignments. (The first installment due Friday 04/13) 28A:Rosen6.5-2; 28B:Rosen6.5-14b; 28C:Rosen6.5-22bd; 28D:Rosen6.6-2b; 28E:Rosen6.6-10ac; 28F:Rosen6.6-24.