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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 6.5, 6.6

2. The main message of this lecture:

Equivalence relations, partial orderings.

Definition 28.1. An equivalence relation on a set A is reflexive, symmetric and transitive
(binary) relation on A. Examples: a = b, a ≡ b (mod m)), a is a relative of b, etc.

Definition 28.2. Let R be an equivalence relation on A. For each a ∈ A the equivalence
class [a]R with respect to R is defined as the set of all elements of A that are R-equivalent to
a: [a]R = {b | (a, b) ∈ R}. Each such b ∈ [a]R is called a representative of the equivalence
class [a]R. Equivalence classes are all nonempty, since a ∈ [a]R, by the reflexivity of R.

Examples: For the equality relation [a]= = {a}, i.e. each equivalence class is a singleton
[2]≡mod 5 = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . .}

Lemma 28.3. For each equivalence relation any two equivalence classes are either disjoint or
coincide: [a] ∩ [b] 6= ∅ ⇒ [a] = [b].
Proof. Suppose [a] ∩ [b] 6= ∅ and take c ∈ ([a] ∩ [b]). For such c we have both aRc and bRc.
Since R is symmetric, cRb also holds. Since R is transitive, we conclude that aRb. It remains
to show that aRb yields [a] = [b]. It suffices to check that [a] ⊆ [b], since the second case
[b] ⊆ [a] has a similar justification. Let d ∈ [a], i.e. dRa. Since aRb., by the transitivity of R,
dRb, and therefore d ∈ [b].

Definition 28.4. A partition of a set A is a collection of nonempty disjoint sets {Ai | i ∈ I},
such that

A =
⋃

i∈I

Ai.

Theorem 28.5. Each equivalence relation R on A specifies a partition of A by the equivalence
classes with respect to R. Conversely, given a partition {Ai | i ∈ I} of A specifies an equivalence
relation R that has the sets Ai, i ∈ I, as its equivalence classes.
Proof. The equivalence classes with respect to R are disjoint, by Lemma 28.3. Moreover, they
cover the whole of A, since every a ∈ A belongs to it least one equivalence class a ∈ [a]. For part
two consider an arbitrary partition {Ai | i ∈ I} of A, and define the relation R by stipulating:
aRb ⇔ a and b belong to the same partition set. The relation R is obviously reflexive, and
symmetric. Checking transitivity: let aRb and bRc. Then a and b are in some partition set Ai.
Likewise, bRc yields b and c are in the same partition set Ai, therefore aRc.

Example 28.6. From an equivalence relation to a partition. Equivalence classes on the set of
integers Z (mod 3).

[0] = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}
[1] = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . .}
[2] = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . .} Z = [0] ∪ [1] ∪ [2].

Example 28.7. From a partition to an equivalence relation. On the same set of integers Z
consider a partition Z = {. . . ,−4,−3,−2,−1} ∪ {0} ∪ {1, 2, 3, 4, . . .}. The equivalence relation



∼ induced by this partition is a ∼ b ⇔ a and b have the same sign. This example illustrates
that equivalence classes not necessarily have “the same” number of elements.

Definition 28.8. A (binary) relation R on A is called partial ordering (or partial order),
if R is reflexive, antisymmetric, and transitive. The pair (A,R) is then called a partially
ordered set (poset, for short). Traditionally, partial orderings are denoted �, and used in
the format a � b.

Examples: a ≤ b on integers, rationals, reals. A ⊆ B on sets, n|m on positive integers. In the
first of those examples any two elements are related one way or another: a ≤ b or b ≤ a. This
does not hold, however, for examples two and three.

Definition 28.9. In a partially ordered set S two elements a, b are comparable if either a � b
or b � a. A partial order (S,�) is a linear order (or total order), if every two elements of S
are comparable. A linear order (S,�) is well-ordered, if every nonempty subset X of S has
the least element: a ∈ X such that a � y for any y ∈ X.

Example 28.10. Linear orders: ≤ on N, Z, Q, R, lexicographic order on strings from Z
Partial orders which are not linear: ⊆ on sets, (m,n) � (m′, n′) ⇔ m ≤ m′ and n ≤ n′

Well-orderings: (Z+,≤), Z+ × Z+ with lexicographic ordering
Linear orderings which are not well ordered: (Z,≤)

Definition 28.11. Hasse diagrams for a poset S is a picture of S directed “upward” with all
the redundant edges removed: loops, transitivity redundancies, arrows on edges (by arranging
an initial vertex below its terminal vertex). Examples: see pictures from the textbook and
from the slides.

Definition 28.12. Every ordering � has its natural irreflexive counterpart ≺ defined as
a ≺ b ⇔ a � b and a 6= b. An element a ∈ S is a maximal element on a poset (S,�) if
there is no b ∈ S such that a ≺ b. Likewise, a ∈ S is a minimal element if there is no b ∈ S
such that b ≺ a. An element a ∈ S is the greatest element if b � a for all b ∈ S; a ∈ S is
the least element if a � b for all b ∈ S. It is immediate from the definitions that the greatest
element (the least element) is unique, if any. It is also clear that the greatest element (the least
element), if any, is a maximal (minimal) element.

Example 28.13. (Z,≤) has neither maximal or minimal elements, therefore, neither great-
est nor least elements. (N,≤) has the least (therefore minimal) element 0, but no maximal
elements. The set of all nontrivial subsets of A = {a, b, c} (i.e. X ⊆ A such that X 6= ∅ and
x 6= A) ordered by inclusion ⊆ has three distinct minimal elements {a}, {b}, and {c}, and three
distinct maximal elements {a, b}, {a, c}, and {b, c}. The multiplicity of minimal (maximal) el-
ements indicate that there are no greatest (least) elements there. Note that a minimal element
is not necessarily the least element, even if this minimal one is unique!

Definition 28.14. Let (S,�) be a poset and A ⊆ S. An element s ∈ S is an upper bound
for A if a � s for all a ∈ A. Likewise, s is a lower bound for A if s � a for all a ∈ A.
The least upper bound for A (notation sup(A)) is the least element, if any, among all upper
bounds for A. Likewise the greatest lower bound for A (notation inf(A)) is the greatest
among all lower bounds for A. Examples: Q ⊂ R has neither upper nor lower bounds. The
set D = {r ∈ Q | r2 < 2} does not have sup in (Q,≤), but has sup in (R,≤): sup(D) =

√
2.

Homework assignments. (The first installment due Friday 04/13) 28A:Rosen6.5-2;
28B:Rosen6.5-14b; 28C:Rosen6.5-22bd; 28D:Rosen6.6-2b; 28E:Rosen6.6-10ac;
28F:Rosen6.6-24.


