1. Reading: K. Rosen Discrete Mathematics and Its Applications, 6.5, 6.6
2. The main message of this lecture:

Equivalence relations, partial orderings.

Definition 28.1. An equivalence relation on a set A is reflexive, symmetric and transitive (binary) relation on A. Examples: $a=b, a \equiv b(\bmod m)$), a is a relative of b, etc.

Definition 28.2. Let R be an equivalence relation on A. For each $a \in A$ the equivalence class $[a]_{R}$ with respect to R is defined as the set of all elements of A that are R-equivalent to $a:[a]_{R}=\{b \mid(a, b) \in R\}$. Each such $b \in[a]_{R}$ is called a representative of the equivalence class $[a]_{R}$. Equivalence classes are all nonempty, since $a \in[a]_{R}$, by the reflexivity of R.

Examples: For the equality relation $[a]_{=}=\{a\}$, i.e. each equivalence class is a singleton

$$
[2]_{\equiv \bmod 5}=\{\ldots,-13,-8,-3,2,7,12,17, \ldots\}
$$

Lemma 28.3. For each equivalence relation any two equivalence classes are either disjoint or coincide: $[a] \cap[b] \neq \emptyset \quad \Rightarrow \quad[a]=[b]$.
Proof. Suppose $[a] \cap[b] \neq \emptyset$ and take $c \in([a] \cap[b])$. For such c we have both $a R c$ and $b R c$. Since R is symmetric, $c R b$ also holds. Since R is transitive, we conclude that $a R b$. It remains to show that $a R b$ yields $[a]=[b]$. It suffices to check that $[a] \subseteq[b]$, since the second case $[b] \subseteq[a]$ has a similar justification. Let $d \in[a]$, i.e. $d R a$. Since $a R b$., by the transitivity of R, $d R b$, and therefore $d \in[b]$.

Definition 28.4. A partition of a set A is a collection of nonempty disjoint sets $\left\{A_{i} \mid i \in I\right\}$, such that

$$
A=\bigcup_{i \in I} A_{i}
$$

Theorem 28.5. Each equivalence relation R on A specifies a partition of A by the equivalence classes with respect to R. Conversely, given a partition $\left\{A_{i} \mid i \in I\right\}$ of A specifies an equivalence relation R that has the sets $A_{i}, i \in I$, as its equivalence classes.
Proof. The equivalence classes with respect to R are disjoint, by Lemma 28.3. Moreover, they cover the whole of A, since every $a \in A$ belongs to it least one equivalence class $a \in[a]$. For part two consider an arbitrary partition $\left\{A_{i} \mid i \in I\right\}$ of A, and define the relation R by stipulating: $a R b \Leftrightarrow a$ and b belong to the same partition set. The relation R is obviously reflexive, and symmetric. Checking transitivity: let $a R b$ and $b R c$. Then a and b are in some partition set A_{i}. Likewise, $b R c$ yields b and c are in the same partition set A_{i}, therefore $a R c$.

Example 28.6. From an equivalence relation to a partition. Equivalence classes on the set of integers $\mathbf{Z}(\bmod 3)$.

$$
\begin{aligned}
& {[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}} \\
& {[1]=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}} \\
& {[2]=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}}
\end{aligned}
$$

Example 28.7. From a partition to an equivalence relation. On the same set of integers \mathbf{Z} consider a partition $\mathbf{Z}=\{\ldots,-4,-3,-2,-1\} \cup\{0\} \cup\{1,2,3,4, \ldots\}$. The equivalence relation
\sim induced by this partition is $a \sim b \Leftrightarrow a$ and b have the same sign. This example illustrates that equivalence classes not necessarily have "the same" number of elements.
Definition 28.8. A (binary) relation R on A is called partial ordering (or partial order), if R is reflexive, antisymmetric, and transitive. The pair (A, R) is then called a partially ordered set (poset, for short). Traditionally, partial orderings are denoted \preceq, and used in the format $a \preceq b$.

Examples: $a \leq b$ on integers, rationals, reals. $A \subseteq B$ on sets, $n \mid m$ on positive integers. In the first of those examples any two elements are related one way or another: $a \leq b$ or $b \leq a$. This does not hold, however, for examples two and three.
Definition 28.9. In a partially ordered set S two elements a, b are comparable if either $a \preceq b$ or $b \preceq a$. A partial order (S, \preceq) is a linear order (or total order), if every two elements of S are comparable. A linear order (S, \preceq) is well-ordered, if every nonempty subset X of S has the least element: $a \in X$ such that $a \preceq y$ for any $y \in X$.

Example 28.10. Linear orders: \leq on $\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}$, lexicographic order on strings from \mathbf{Z} Partial orders which are not linear: \subseteq on sets, $(m, n) \preceq\left(m^{\prime}, n^{\prime}\right) \Leftrightarrow m \leq m^{\prime}$ and $n \leq n^{\prime}$ Well-orderings: $\left(\mathbf{Z}^{+}, \leq\right), \mathbf{Z}^{+} \times \mathbf{Z}^{+}$with lexicographic ordering
Linear orderings which are not well ordered: (\mathbf{Z}, \leq)
Definition 28.11. Hasse diagrams for a poset S is a picture of S directed "upward" with all the redundant edges removed: loops, transitivity redundancies, arrows on edges (by arranging an initial vertex below its terminal vertex). Examples: see pictures from the textbook and from the slides.

Definition 28.12. Every ordering \preceq has its natural irreflexive counterpart \prec defined as $a \prec b \Leftrightarrow a \preceq b$ and $a \neq b$. An element $a \in S$ is a maximal element on a poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$. Likewise, $a \in S$ is a minimal element if there is no $b \in S$ such that $b \prec a$. An element $a \in S$ is the greatest element if $b \preceq a$ for all $b \in S ; a \in S$ is the least element if $a \preceq b$ for all $b \in S$. It is immediate from the definitions that the greatest element (the least element) is unique, if any. It is also clear that the greatest element (the least element), if any, is a maximal (minimal) element.

Example 28.13. (\mathbf{Z}, \leq) has neither maximal or minimal elements, therefore, neither greatest nor least elements. (\mathbf{N}, \leq) has the least (therefore minimal) element 0 , but no maximal elements. The set of all nontrivial subsets of $A=\{a, b, c\}$ (i.e. $X \subseteq A$ such that $X \neq \emptyset$ and $x \neq A$) ordered by inclusion \subseteq has three distinct minimal elements $\{a\},\{b\}$, and $\{c\}$, and three distinct maximal elements $\{a, b\},\{a, c\}$, and $\{b, c\}$. The multiplicity of minimal (maximal) elements indicate that there are no greatest (least) elements there. Note that a minimal element is not necessarily the least element, even if this minimal one is unique!
Definition 28.14. Let (S, \preceq) be a poset and $A \subseteq S$. An element $s \in S$ is an upper bound for A if $a \preceq s$ for all $a \in A$. Likewise, s is a lower bound for A if $s \preceq a$ for all $a \in A$. The least upper bound for A (notation $\sup (A)$) is the least element, if any, among all upper bounds for A. Likewise the greatest lower bound for A (notation $\inf (A)$) is the greatest among all lower bounds for A. Examples: $\mathbf{Q} \subset \mathbf{R}$ has neither upper nor lower bounds. The set $D=\left\{r \in Q \mid r^{2}<2\right\}$ does not have sup in (\mathbf{Q}, \leq), but has sup in $(\mathbf{R}, \leq): \sup (D)=\sqrt{2}$.
Homework assignments. (The first installment due Friday 04/13) 28A:Rosen6.5-2;
28B:Rosen6.5-14b; 28C:Rosen6.5-22bd; 28D:Rosen6.6-2b; 28E:Rosen6.6-10ac;
28F:Rosen6.6-24.

