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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 6.3, 6.4.

2. The main message of this lecture:

Theoretically speaking a relation is a set of ordered pairs
(n-tuples). Speaking practically, a relation is a matrix,
a graph, etc.

As we remember, a (binary) relation R ⊆ A × B for finite A, B can be represented by a
characteristic bit matrix MR = [mi,j] where mi,j = 1 if (ai, bj) ∈ R and mi,j = 0 if (ai, bj) 6∈ R.
Therefore, the usual set theoretical operations on relations can be represented by bit operation
on matrices.

MR∪S = MR ∨ MS , (the join of matrices, the entrywise “∨”)
MR∩S = MR ∧ MS , (the meet of matrices, the entrywise “∧”)
MR◦S = MS � MR, (the boolean product of matrices)

Mind the change of order of appearance of S and R in the last formula due to an awkward
notation for R ◦ S

Example 27.1. Let A = {a, b} and R, S be relations on A represented by the matrices

MR =

(
1 1
0 0

)
, MS =

(
0 1
1 0

)

Then

MR∪S = MR ∨ MS =

(
1 1
0 0

)
∨
(

0 1
1 0

)
=

(
1 1
1 0

)

MR∩S = MR ∧ MS =

(
1 1
0 0

)
∧
(

0 1
1 0

)
=

(
0 1
0 0

)

MR◦S = MS � MR =

(
0 1
1 0

)
�
(

1 1
0 0

)
=

(
0 0
1 1

)

Another canonical way of representing relations on A is directed graphs (or digraphs, for
short). Elements of A are represented by vertices (or nodes) of a graph. Elements (a, b) of
R ⊆ A2 are represented by edges (or arcs) from a to b. To be absolutely honest, from the
point of view of abstract mathematics, a relation and the representing digraph are the same
objects, namely, sets of ordered pairs of vertices. The difference is in its visualizing: the former
is usually thought of as a list of pairs, whereas the latter is a picture with nodes and arcs (see
examples in the book and on the slides).

R is reflexive iff there is a loop as every node. R is symmetric iff for every edge there is the
edge in the opposite direction. R is transitive iff for every two edges a −→ b and b −→ c there
is a edge is a −→ c.



Definition 27.2. Let P be a property of relations (such as reflexivity, symmetry, transitivity).
A closure of a given relation R with respect to P is the smallest relation S that contains R and
has property P:

1. S ⊇ R
2. S has property P
3. S ⊆ X for any X satisfying (1) and (2).

Example 27.3. Let R be a relation on A. The reflexive closure of R is R∪{(a, a) | a ∈ A}.
The symmetric closure of R is R ∪ R1, where R1 = {(b, a) | (a, b) ∈ R}.
Definition 27.4. A path in a digraph G is a sequence of edges (x0x1), (x1x2), . . . , (xn−1xn)
from G. Notation: a path x0x1x2 . . . xn−1xn, n is the length of a path = the number of edges
(not nodes!). A path from a to b is a path ax1x2 . . . xn−1b, a cycle is a path x0x1 . . . xn−1x0.

Theorem 27.5. There is a path from a to b of length n in a digraph corresponding to a relation
R if and only if (a, b) ∈ Rn.
Proof. Induction on n. Base: n = 1. In this case a path is ab and (a, b) ∈ R. Induction
Hypothesis: assume that the theorem holds for n = k. Step: there is a path from a to b of
length k + 1 if and only if for some c such that (c, b) ∈ R there is a path from a to c of length
k. By the Induction Hypothesis, the latter is equivalent to (a, c) ∈ Rk, therefore the existence
of a path from a to b of length k + 1 is equivalent to (a, b) ∈ Rk+1.

Definition 27.6. Let R be a relation on A. The connectivity relation over R is R∗ =
{(a, b) | there is a path from a to b in R}.
Corollary 27.7.

R∗ =
∞⋃

n=1

Rn

Theorem 27.8. Let R be a relation on A. Then the transitive closure of R is R∗.
Proof. The transitive closure of R ⊆ R∗ since R∗ ⊇ R and R∗ is transitive. On the other
hand, R∗ ⊆ the transitive closure of R since any connected pair (a, b) belongs to any transitive
S ⊇ R.

Examples 27.9. The transitive closure of the relation on reals “the distance between x and y
is one” is “the distance between x and y is an integer”. The transitive closure of “a computer
a has had a connection to a computer b” contains all pairs of computers from WWW. The
transitive closure of “x is a mother of y” contains, in particular, the pair (Eve, yourself).

Though generally speaking R∗ = R ∪ R2 ∪ R3 ∪ . . . ∪ Rn ∪ . . ., for finite relations the number
of iterations in this union can be limited to the cardinality of the underlying set.

Theorem 27.10. Let R be a relation on a finite set A. Then R∗ = R ∪ R2 ∪ R3 ∪ . . . ∪ Rn

where n = |A|.
Proof. Note that if there is a path from a to b in R then there is such a path of length not
exceeding n. Indeed, if a path is longer then n = |A|, then, by the Pigeonhole Principle, this
path contains cycles, that can be deleted (see the slides).

Corollary 27.11. Under the conditions of 27.10 MR∗ = MR ∨ M2
R ∨ M3

R ∨ . . . ∨ Mn
R

Homework assignments. (The third installment due Friday 04/06)

27A:Rosen6.3-8; 27B:Rosen6.3-12; 27C:Rosen6.4-20; 27D:Rosen6.4-26bc;


