1. Reading: K. Rosen Discrete Mathematics and Its Applications, 6.3, 6.4.
2. The main message of this lecture:

Theoretically speaking a relation is a set of ordered pairs (n-tuples). Speaking practically, a relation is a matrix, a graph, etc.

As we remember, a (binary) relation $R \subseteq A \times B$ for finite A, B can be represented by a characteristic bit matrix $M_{R}=\left[m_{i, j}\right]$ where $m_{i, j}=1$ if $\left(a_{i}, b_{j}\right) \in R$ and $m_{i, j}=0$ if $\left(a_{i}, b_{j}\right) \notin R$. Therefore, the usual set theoretical operations on relations can be represented by bit operation on matrices.

$$
\begin{aligned}
& M_{R \cup S}=M_{R} \vee M_{S}, \quad \text { (the join of matrices, the entrywise " } \vee \text { ") } \\
& M_{R \cap S}=M_{R} \wedge M_{S}, \quad \text { (the meet of matrices, the entrywise " } \wedge \text { ") } \\
& M_{R \circ S}=M_{S} \odot M_{R}, \quad \text { (the boolean product of matrices) }
\end{aligned}
$$

Mind the change of order of appearance of S and R in the last formula due to an awkward notation for $R \circ S$

Example 27.1. Let $A=\{a, b\}$ and R, S be relations on A represented by the matrices

$$
M_{R}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad M_{S}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
& M_{R \cup S}=M_{R} \vee M_{S}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \vee\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& M_{R \cap S}=M_{R} \wedge M_{S}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \wedge\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& M_{R \circ S}=M_{S} \odot M_{R}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \odot\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Another canonical way of representing relations on A is directed graphs (or digraphs, for short). Elements of A are represented by vertices (or nodes) of a graph. Elements (a, b) of $R \subseteq A^{2}$ are represented by edges (or arcs) from a to b. To be absolutely honest, from the point of view of abstract mathematics, a relation and the representing digraph are the same objects, namely, sets of ordered pairs of vertices. The difference is in its visualizing: the former is usually thought of as a list of pairs, whereas the latter is a picture with nodes and arcs (see examples in the book and on the slides).
R is reflexive iff there is a loop as every node. R is symmetric iff for every edge there is the edge in the opposite direction. R is transitive iff for every two edges $a \longrightarrow b$ and $b \longrightarrow c$ there is a edge is $a \longrightarrow c$.

Definition 27.2. Let \mathbf{P} be a property of relations (such as reflexivity, symmetry, transitivity). A closure of a given relation R with respect to \mathbf{P} is the smallest relation S that contains R and has property \mathbf{P} :

1. $S \supseteq R$
2. S has property P
3. $S \subseteq X$ for any X satisfying (1) and (2).

Example 27.3. Let R be a relation on A. The reflexive closure of R is $R \cup\{(a, a) \mid a \in A\}$. The symmetric closure of R is $R \cup R_{1}$, where $R_{1}=\{(b, a) \mid(a, b) \in R\}$.
Definition 27.4. A path in a digraph G is a sequence of edges $\left(x_{0} x_{1}\right),\left(x_{1} x_{2}\right), \ldots,\left(x_{n-1} x_{n}\right)$ from G. Notation: a path $x_{0} x_{1} x_{2} \ldots x_{n-1} x_{n}, n$ is the length of a path $=$ the number of edges (not nodes!). A path from a to b is a path $a x_{1} x_{2} \ldots x_{n-1} b$, a cycle is a path $x_{0} x_{1} \ldots x_{n-1} x_{0}$.
Theorem 27.5. There is a path from a to b of length n in a digraph corresponding to a relation R if and only if $(a, b) \in R^{n}$.
Proof. Induction on n. Base: $n=1$. In this case a path is $a b$ and $(a, b) \in R$. Induction Hypothesis: assume that the theorem holds for $n=k$. Step: there is a path from a to b of length $k+1$ if and only if for some c such that $(c, b) \in R$ there is a path from a to c of length k. By the Induction Hypothesis, the latter is equivalent to $(a, c) \in R^{k}$, therefore the existence of a path from a to b of length $k+1$ is equivalent to $(a, b) \in R^{k+1}$.

Definition 27.6. Let R be a relation on A. The connectivity relation over R is $R^{*}=$ $\{(a, b) \mid$ there is a path from a to b in $R\}$.
Corollary 27.7.

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

Theorem 27.8. Let R be a relation on A. Then the transitive closure of R is R^{*}.
Proof. The transitive closure of $R \subseteq R^{*}$ since $R^{*} \supseteq R$ and R^{*} is transitive. On the other hand, $R^{*} \subseteq$ the transitive closure of R since any connected pair (a, b) belongs to any transitive $S \supseteq R$.
Examples 27.9. The transitive closure of the relation on reals "the distance between x and y is one" is "the distance between x and y is an integer". The transitive closure of "a computer a has had a connection to a computer b " contains all pairs of computers from WWW. The transitive closure of " x is a mother of y " contains, in particular, the pair (Eve, yourself).
Though generally speaking $R^{*}=R \cup R^{2} \cup R^{3} \cup \ldots \cup R^{n} \cup \ldots$, for finite relations the number of iterations in this union can be limited to the cardinality of the underlying set.
Theorem 27.10. Let R be a relation on a finite set A. Then $R^{*}=R \cup R^{2} \cup R^{3} \cup \ldots \cup R^{n}$ where $n=|A|$.
Proof. Note that if there is a path from a to b in R then there is such a path of length not exceeding n. Indeed, if a path is longer then $n=|A|$, then, by the Pigeonhole Principle, this path contains cycles, that can be deleted (see the slides).

Corollary 27.11. Under the conditions of $27.10 M_{R^{*}}=M_{R} \vee M_{R}^{2} \vee M_{R}^{3} \vee \ldots \vee M_{R}^{n}$
Homework assignments. (The third installment due Friday 04/06)
27A:Rosen6.3-8; 27B:Rosen6.3-12; 27C:Rosen6.4-20; 27D:Rosen6.4-26bc;

