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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 5.5.

2. The main message of this lecture:

The Inclusion-Exclusion Principle admits an elegant gen-
eralization to n participating sets for each n.

Theorem 25.1. (a good old Inclusion-Exclusion Principle for two sets)

|A ∪ B| = |A| + |B| − |A ∩ B|

Proof. Present A ∪ B as the union of three disjoint sets

A ∪ B = (A − B) ∪ (B − A) ∪ (A ∩ B).

The cardinality of the union of disjoint sets is the sum of their cardinalities, therefore

|A ∪ B| = |A − B| + |B − A| + |A ∩ B|.

On the other hand, A = (A − B) ∪ (A ∩ B) and B = (B − A) ∪ (A ∩ B), and both of
their unions are disjoint. Thus |A| = |A − B| + |A ∩ B|, |B| = |B − A| + |A ∩ B|, therefore
|A| + |B| = |A − B| + |B − A| + 2 · |A ∩ B|. Thus

|A∪B| = |A−B|+|B−A|+|A∩B| = (|A−B|+|B−A|+2·|A∩B|)−|A∩B| = |A|+|B|−|A∩B|.

A “light” proof of the same fact: in the sum |A|+ |B| each element of A−B and each element
of B −A has been counted once, whereas each element of A∩B has been counted twice: first
in A, and then in B. To obtain an exact number |A ∪ B| one has to make an adjustments in
|A| + |B| by subtracting |A ∩ B|.
What about three sets? How can one evaluate |A∪B∪C| knowing cardinalities of A,B,C, their
intersections, etc.? Look at the picture on slide 145, and use the “light” argument. Consider
the sum |A| + |B| + |C| and try to adjust this number to get |A ∪ B ∪ C|.

the “blue” elements (sets A − (B ∪ C), B − (A ∪ C), C − (A ∪ B)) are counted once,
the “red” elements (sets (A ∪ B) − C, (B ∪ C) − A, (A ∪ C) − B) are counted twice,
the “green” ones (set A ∩ B ∩ C) are counted three times.

Let us try this as an approximation to |A ∪ B ∪ C|:

|A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |A ∩ C|.

In this sum all “blue” and all “red” elements have been counted once (which is good), but the
“green” ones have been counted 0 times! Indeed, if x ∈ A∩B ∩C, then x has been counted in
each of the six terms above: with “+” in |A|, |B|, and |C|, and with “−” in |A ∩ B|, |B ∩ C|,
and |A ∩ C|. To compensate this discrepancy we have to add |A ∩ B ∩ C| back, with gives a
beautiful formula of the Inclusion-Exclusion Principle for three sets:

|A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |A ∩ C| + |A ∩ B ∩ C|.



Example 25.2. Every student in some class takes at least one of three courses: Math, Phi-
losophy or Introduction to Wines.

The number M of Math students is 30 The number MP of Math and Phil students is 10
The number P of Phil students is 40 The number MW of Math and I.W. students is 20
The number W of I.W. students is 100 The number PW of Phil and I.W. students is 20

There are 5 students who take all three courses: Math, Phil, and I.W. (the number MPV W ).
How many students (N) are there in the class? By the Inclusion-Exclusion Principle,

N = M + P + W − MP − MW − PW + MPW = 30 + 40 + 100 − 10 − 20 − 20 + 5 = 125

Example 25.3. Similar setup, but now we know N the total number of students in the class
(say, N = 125), as well as M = 30, P = 40, W = 100, MP = 10, MW = 20, PW = 20.
How many students take all three courses (i.e. evaluate the number MPW )? By the Inclusion-
Exclusion Principle, plot an equation

125 = 30 + 40 + 100 − 10 − 20 − 20 + X,

from which it immediately follows that X = 5.

Theorem 25.4. The Inclusion-Exclusion Principle in a general setting

|A1 ∪ A2 ∪ . . . ∪ An| = |A1| + |A2| + . . . + |An| −
∑

1≤i<j≤n

|Ai ∩ Aj |+

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − . . . (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|

Proof. It suffices to establish that each element a of A1 ∪ A2 ∪ . . . ∪ An has been counted in
the right-hand side of this formula exactly once. Without loss of generality we assume that
a ∈ A1 ∪A2∪ . . .∪Ar and a 6∈ Ar+1, a 6∈ Ar+2, . . . , a 6∈ An. The number x of times the element
a has been counted in the following groups of terms are:

|A1| + |A2| + . . . + |An| r = C(r, 1) times,
−|A1 ∩ A2| − |A1 ∩ A3| − . . . −C(r, 2) times,
+|A1 ∩ A2 ∩ A3| + . . . +C(r, 3) times,
....................................
(−1)r+1(|A1 ∩ A2 ∩ . . . ∩ Ar| + . . .) (−1)r+1C(r, r) times
....................................
(−1)n+1|A1 ∩ A2 ∩ . . . ∩ An| 0 times.

Therefore, x = C(r, 1) − C(r, 2) + C(r, 3) − . . . (−1)r+1C(r, r). Since

C(r, 0) − C(r, 1) + C(r, 2) − C(r, 3) + . . . (−1)rC(r, r) = 0,

C(r, 0) − x = 0, thus x = C(r, 0) = 1.

Note that the Inclusion-Exclusion formula is not very practical for large n’s, since the number
of terms in the right-hand side of it equals to the number of nonempty subsets of {1, 2, 3, . . . , n}
i.e. equals to 2n − 1.

Homework assignments. (The first installment due Friday 04/06)
25A:Rosen5.5-8; 25B:Rosen5.5-10; 25C:Rosen5.5-24.


