1. Reading: K. Rosen Discrete Mathematics and Its Applications, 5.5.
2. The main message of this lecture:

The Inclusion-Exclusion Principle admits an elegant generalization to n participating sets for each n.

Theorem 25.1. (a good old Inclusion-Exclusion Principle for two sets)

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Proof. Present $A \cup B$ as the union of three disjoint sets

$$
A \cup B=(A-B) \cup(B-A) \cup(A \cap B) .
$$

The cardinality of the union of disjoint sets is the sum of their cardinalities, therefore

$$
|A \cup B|=|A-B|+|B-A|+|A \cap B| .
$$

On the other hand, $A=(A-B) \cup(A \cap B)$ and $B=(B-A) \cup(A \cap B)$, and both of their unions are disjoint. Thus $|A|=|A-B|+|A \cap B|,|B|=|B-A|+|A \cap B|$, therefore $|A|+|B|=|A-B|+|B-A|+2 \cdot|A \cap B|$. Thus
$|A \cup B|=|A-B|+|B-A|+|A \cap B|=(|A-B|+|B-A|+2 \cdot|A \cap B|)-|A \cap B|=|A|+|B|-|A \cap B|$.
A "light" proof of the same fact: in the sum $|A|+|B|$ each element of $A-B$ and each element of $B-A$ has been counted once, whereas each element of $A \cap B$ has been counted twice: first in A, and then in B. To obtain an exact number $|A \cup B|$ one has to make an adjustments in $|A|+|B|$ by subtracting $|A \cap B|$.
What about three sets? How can one evaluate $|A \cup B \cup C|$ knowing cardinalities of A, B, C, their intersections, etc.? Look at the picture on slide 145, and use the "light" argument. Consider the sum $|A|+|B|+|C|$ and try to adjust this number to get $|A \cup B \cup C|$.
the "blue" elements (sets $A-(B \cup C), B-(A \cup C), C-(A \cup B))$ are counted once, the "red" elements (sets $(A \cup B)-C,(B \cup C)-A,(A \cup C)-B)$ are counted twice,
the "green" ones (set $A \cap B \cap C$) are counted three times.
Let us try this as an approximation to $|A \cup B \cup C|$:

$$
|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C| .
$$

In this sum all "blue" and all "red" elements have been counted once (which is good), but the "green" ones have been counted 0 times! Indeed, if $x \in A \cap B \cap C$, then x has been counted in each of the six terms above: with "+" in $|A|,|B|$, and $|C|$, and with "-" in $|A \cap B|,|B \cap C|$, and $|A \cap C|$. To compensate this discrepancy we have to add $|A \cap B \cap C|$ back, with gives a beautiful formula of the Inclusion-Exclusion Principle for three sets:

$$
|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C| .
$$

Example 25.2. Every student in some class takes at least one of three courses: Math, Philosophy or Introduction to Wines.
The number M of Math students is 30 The number $M P$ of Math and Phil students is 10
The number P of Phil students is $40 \quad$ The number $M W$ of Math and I.W. students is 20
The number W of I.W. students is 100 The number $P W$ of Phil and I.W. students is 20
There are 5 students who take all three courses: Math, Phil, and I.W. (the number $M P V W$). How many students (N) are there in the class? By the Inclusion-Exclusion Principle,

$$
N=M+P+W-M P-M W-P W+M P W=30+40+100-10-20-20+5=125
$$

Example 25.3. Similar setup, but now we know N the total number of students in the class (say, $N=125$), as well as $M=30, P=40, W=100, M P=10, M W=20, P W=20$. How many students take all three courses (i.e. evaluate the number $M P W$)? By the InclusionExclusion Principle, plot an equation

$$
125=30+40+100-10-20-20+X,
$$

from which it immediately follows that $X=5$.
Theorem 25.4. The Inclusion-Exclusion Principle in a general setting

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{n}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+ \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\quad \ldots \quad(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof. It suffices to establish that each element a of $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ has been counted in the right-hand side of this formula exactly once. Without loss of generality we assume that $a \in A_{1} \cup A_{2} \cup \ldots \cup A_{r}$ and $a \notin A_{r+1}, a \notin A_{r+2}, \ldots, a \notin A_{n}$. The number x of times the element a has been counted in the following groups of terms are:

$$
\begin{array}{lr}
\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{n}\right| & r=C(r, 1) \text { times, } \\
-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\ldots & -C(r, 2) \text { times }, \\
+\left|A_{1} \cap A_{2} \cap A_{3}\right|+\ldots & +C(r, 3) \text { times }, \\
\ldots & (-1)^{r+1} C(r, r) \text { times } \\
(-1)^{r+1}\left(\left|A_{1} \cap A_{2} \cap \ldots \cap A_{r}\right|+\ldots\right) & \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & 0 \text { times. }
\end{array}
$$

Therefore, $x=C(r, 1)-C(r, 2)+C(r, 3)-\ldots(-1)^{r+1} C(r, r)$. Since

$$
C(r, 0)-C(r, 1)+C(r, 2)-C(r, 3)+\ldots(-1)^{r} C(r, r)=0,
$$

$C(r, 0)-x=0$, thus $x=C(r, 0)=1$.
Note that the Inclusion-Exclusion formula is not very practical for large n 's, since the number of terms in the right-hand side of it equals to the number of nonempty subsets of $\{1,2,3, \ldots, n\}$ i.e. equals to $2^{n}-1$.

Homework assignments. (The first installment due Friday 04/06)
25A:Rosen5.5-8; 25B:Rosen5.5-10; 25C:Rosen5.5-24.

