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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 5.1

2. The main message of this lecture:

Recursion applies to counting as well.

Definition 24.1. A recurrence relation R for a sequence {an} is an equation (understood
broadly) that expresses an in terms of some of the previous terms a0, a1, . . . , an−1. A solution
of a given recurrence relation R is a sequence {an} of terms satisfying R.

Example 24.2. The size of a certain fish population in Cayuga lake can increase 10% a
year due to natural growth. The harvesting rate is 1000 individuals per year. If the initial
population size is 8000 individuals find the population size after 5 years.

Solution: an= the population size after n years.
a0 = 8000 - the initial condition
an = 1.1 · an−1 − 1000 - the recurrence relation proper.

Note that there is no principal difference between an initial condition and a recurrence relation
in the narrow sense. In particular, the problem above can be formally presented in the standard
unified form 24.1:

an =

{
8000, if n = 0
1.1 · an−1 − 1000, if n ≥ 1

Here n0 = 1. The problem 24.2 has a unique solution:
a0 = 8000
a1 = 1.1 · a0 − 1000 = 8800 − 1000 = 7800
a2 = 1.1 · a1 − 1000 = 8580 − 1000 = 7580
a3 = 1.1 · a2 − 1000 = 7338
a4 = 1.1 · a3 − 1000 = 7072
a5 = 1.1 · a4 − 1000 = 6779.2

Can you explain the population size being a rational which is not an integer? Well, this is
a difference between a real biological system (where the size of a fish population is always a
nonnegative integer) and its mathematical model where this number is not necessarily integer.

Example 24.3. Some more familiar examples.

Recurrence relation Solution

an = an−1 + d a0, a0 + d, a0 + 2d, . . . , a0 + (n − 1) · d, . . .
arithmetic progression

an = an−1 · q a0, a0 · q, a0 · q2, . . . , a0 · qn−1, . . .
geometric progression

a0 = 0, a1 = 1, an = an−2 + an−1 0, 1, 1, 2, 3, 5, 8, 13, . . .
Fibonacci numbers



Example 24.4. (Compound interest) The initial deposit is $10000 at a bank yielding 5% per
year with interest compounded annually. How much will be the amount after n years?

Recurrent equation is S0 = 10000, Sn = 1.05 · Sn−1. Solution sequence: S0 = 10000, S1 =
1.05 ·S0 = 1.05 ·10 000 = 10 500 . . . S10 = 16 288.95 . . . S30 = 315 000 . . . S100 = 1 315 012.6.
So, everyone can become well off provided he/she lives long enough ...

Example 24.5. Find a recurrence relation for the number bn of bit strings of length n that
do not have two consecutive 0’s: b0 = 1 (only one null string), b1 = 2 (two bit strings of length
1, both fit). Let now n ≥ 2. We present bn = X + Y , where X is the number of strings ending
with 1 and Y the number of strings ending with 0. Note that X = bn−1, since each such string
ending with 1 is x1 where x is a string without two consecutive 0’s. Moreover, Y = bn−2, since
each such string ending with 0 is y10, where y is a string without two consecutive 0’s. The
resulting equation is b0 = 1, b1 = 2, bn = bn−2+bn−1 for n ≥ 2. Solution: 1, 2, 3, 5, 8, 13, 21, . . ..
In other words, bn = fn+2, where fm is the mth Fibonacci number.

Example 24.6. Suppose a codeword is a string of decimal digits, a valid codeword is a
codeword with even number of 0’s. Let an stand for the number of valid codewords of length
n. Then a0 = 1 (the null string fits). Consider n ≥ 1. Each valid codeword x of length n can
be represented as x = yσ, where y is a codeword, and σ a decimal digit. There are two disjoint
possibilities:

1) σ 6= 0 thus y is a valid codeword, 2) σ = 0 and y is an invalid codeword.
By the Product Rule, the number of variants (1) is an−1 · 9, the number of variants (2) is
10n−1 − an−1. By the Sum Rule, an = 9an−1 + (10n−1 − an−1) = 8an−1 + 10n−1. In particular,
a1 = 8 · 1 + 100 = 8 + 1 = 9, which agrees with the direct observation that the valid codewords
of length 1 are 1, 2, 3, . . . , 9.

Example 24.7. Messages are transmitted through a communication channel using two signals:
one requires 1 microsecond, the other 2 microseconds. Find the total umber an of messages
that can be sent in n microseconds (no blanks are permitted). Note that a0 = 1, a1 = 1. Let
n ≥ 2. Then each message x of length n falls into one of two disjoint classes:

1) x = yα, where y is a message of length n − 1, α a short signal.
2) x = zβ, where z is a message of length n − 2, β a long signal.

As before, an = an−1 + an−2, therefore, an = fn+1.

Example 24.8. Find a recurrence equation for the number Cn of ways to parenthesize the
product of n + 1 terms x0 · x1 · x2 · . . . · xn. For example, there is only one way to parenthesize
a ”product” x0, thus C0 = 1. There is also only one way to parenthesize x0 · x1, therefore,
C1 = 1. For C2 consider a product x0 ·x1 ·x2. There are two different ways to do it: (x0 ·x1) ·x2

or x0 · (x1 · x2), thus C2 = 2. For n = 3 we already have five possibilities:
x0 · (x1 · (x2 ·x3)), x0 · ((x1 ·x2) ·x3), (x0 ·x1) · (x2 ·x3), (x0 · (x1 ·x2)) ·x3, ((x0 ·x1) ·x2) ·x3.
Here is a general argument: for a product x0·x1·x2·. . .·xn first of all pick one of n multiplications
as the outermost one. Each such pick breaks the problem of size n into two independent
problems of the combined size n − 1. By the Sum Rule and the Product Rule,

Cn = C0 · Cn−1 + C1 · Cn−2 + . . . + Cn−1 · C0 =
n−1∑
k=0

CkCn−k−1.

The numbers Cn are called Catalan numbers; it can be shown that Cn = C(2n, n)/(n + 1).

Homework assignments. (due Friday 03/30).

24A:Rosen5.1-10; 24B:Rosen5.1-22; 24C:Rosen5.1-30


