1. Reading: K. Rosen Discrete Mathematics and Its Applications, 5.1
2. The main message of this lecture:

## Recursion applies to counting as well.

Definition 24.1. A recurrence relation $R$ for a sequence $\left\{a_{n}\right\}$ is an equation (understood broadly) that expresses $a_{n}$ in terms of some of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$. A solution of a given recurrence relation $R$ is a sequence $\left\{a_{n}\right\}$ of terms satisfying $R$.
Example 24.2. The size of a certain fish population in Cayuga lake can increase $10 \%$ a year due to natural growth. The harvesting rate is 1000 individuals per year. If the initial population size is 8000 individuals find the population size after 5 years.

Solution: $a_{n}=$ the population size after $n$ years.
$a_{0}=8000-$ the initial condition
$a_{n}=1.1 \cdot a_{n-1}-1000-$ the recurrence relation proper.
Note that there is no principal difference between an initial condition and a recurrence relation in the narrow sense. In particular, the problem above can be formally presented in the standard unified form 24.1:

$$
a_{n}= \begin{cases}8000, & \text { if } n=0 \\ 1.1 \cdot a_{n-1}-1000, & \text { if } n \geq 1\end{cases}
$$

Here $n_{0}=1$. The problem 24.2 has a unique solution:

$$
\begin{aligned}
& a_{0}=8000 \\
& a_{1}=1.1 \cdot a_{0}-1000=8800-1000=7800 \\
& a_{2}=1.1 \cdot a_{1}-1000=8580-1000=7580 \\
& a_{3}=1.1 \cdot a_{2}-1000=7338 \\
& a_{4}=1.1 \cdot a_{3}-1000=7072 \\
& a_{5}=1.1 \cdot a_{4}-1000=6779.2
\end{aligned}
$$

Can you explain the population size being a rational which is not an integer? Well, this is a difference between a real biological system (where the size of a fish population is always a nonnegative integer) and its mathematical model where this number is not necessarily integer.

Example 24.3. Some more familiar examples.
$\left.\begin{array}{cc}\text { Recurrence relation } & \text { Solution } \\ \hline a_{n}=a_{n-1}+d & a_{0}, a_{0}+d, a_{0}+2 d, \ldots, a_{0}+(n-1) \cdot d, \ldots \\ \text { arithmetic progression } \\ a_{n}=a_{n-1} \cdot q & a_{0}, a_{0} \cdot q, a_{0} \cdot q^{2}, \ldots, a_{0} \cdot q^{n-1}, \ldots \\ \text { geometric progression }\end{array}\right\}$

Example 24.4. (Compound interest) The initial deposit is $\$ 10000$ at a bank yielding $5 \%$ per year with interest compounded annually. How much will be the amount after $n$ years?
Recurrent equation is $S_{0}=10000, S_{n}=1.05 \cdot S_{n-1}$. Solution sequence: $S_{0}=10000, S_{1}=$ $1.05 \cdot S_{0}=1.05 \cdot 10000=10500 \ldots S_{10}=16288.95 \ldots S_{30}=315000 \ldots S_{100}=1315012.6$. So, everyone can become well off provided he/she lives long enough ...
Example 24.5. Find a recurrence relation for the number $b_{n}$ of bit strings of length $n$ that do not have two consecutive 0 's: $b_{0}=1$ (only one null string), $b_{1}=2$ (two bit strings of length 1 , both fit). Let now $n \geq 2$. We present $b_{n}=X+Y$, where $X$ is the number of strings ending with 1 and $Y$ the number of strings ending with 0 . Note that $X=b_{n-1}$, since each such string ending with 1 is $x 1$ where $x$ is a string without two consecutive 0 's. Moreover, $Y=b_{n-2}$, since each such string ending with 0 is $y 10$, where $y$ is a string without two consecutive 0 's. The resulting equation is $b_{0}=1, b_{1}=2, b_{n}=b_{n-2}+b_{n-1}$ for $n \geq 2$. Solution: $1,2,3,5,8,13,21, \ldots$. In other words, $b_{n}=f_{n+2}$, where $f_{m}$ is the $m$ th Fibonacci number.
Example 24.6. Suppose a codeword is a string of decimal digits, a valid codeword is a codeword with even number of 0 's. Let $a_{n}$ stand for the number of valid codewords of length $n$. Then $a_{0}=1$ (the null string fits). Consider $n \geq 1$. Each valid codeword $x$ of length $n$ can be represented as $x=y \sigma$, where $y$ is a codeword, and $\sigma$ a decimal digit. There are two disjoint possibilities:

1) $\sigma \neq 0$ thus $y$ is a valid codeword, 2) $\sigma=0$ and $y$ is an invalid codeword.

By the Product Rule, the number of variants (1) is $a_{n-1} \cdot 9$, the number of variants (2) is $10^{n-1}-a_{n-1}$. By the Sum Rule, $a_{n}=9 a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}$. In particular, $a_{1}=8 \cdot 1+10^{0}=8+1=9$, which agrees with the direct observation that the valid codewords of length 1 are $1,2,3, \ldots, 9$.
Example 24.7. Messages are transmitted through a communication channel using two signals: one requires 1 microsecond, the other 2 microseconds. Find the total umber $a_{n}$ of messages that can be sent in $n$ microseconds (no blanks are permitted). Note that $a_{0}=1, a_{1}=1$. Let $n \geq 2$. Then each message $x$ of length $n$ falls into one of two disjoint classes:

1) $x=y \alpha$, where $y$ is a message of length $n-1, \alpha$ a short signal.
2) $x=z \beta$, where $z$ is a message of length $n-2, \beta$ a long signal.

As before, $a_{n}=a_{n-1}+a_{n-2}$, therefore, $a_{n}=f_{n+1}$.
Example 24.8. Find a recurrence equation for the number $C_{n}$ of ways to parenthesize the product of $n+1$ terms $x_{0} \cdot x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$. For example, there is only one way to parenthesize a "product" $x_{0}$, thus $C_{0}=1$. There is also only one way to parenthesize $x_{0} \cdot x_{1}$, therefore, $C_{1}=1$. For $C_{2}$ consider a product $x_{0} \cdot x_{1} \cdot x_{2}$. There are two different ways to do it: $\left(x_{0} \cdot x_{1}\right) \cdot x_{2}$ or $x_{0} \cdot\left(x_{1} \cdot x_{2}\right)$, thus $C_{2}=2$. For $n=3$ we already have five possibilities:
$x_{0} \cdot\left(x_{1} \cdot\left(x_{2} \cdot x_{3}\right)\right), x_{0} \cdot\left(\left(x_{1} \cdot x_{2}\right) \cdot x_{3}\right), \quad\left(x_{0} \cdot x_{1}\right) \cdot\left(x_{2} \cdot x_{3}\right), \quad\left(x_{0} \cdot\left(x_{1} \cdot x_{2}\right)\right) \cdot x_{3}, \quad\left(\left(x_{0} \cdot x_{1}\right) \cdot x_{2}\right) \cdot x_{3}$. Here is a general argument: for a product $x_{0} \cdot x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ first of all pick one of $n$ multiplications as the outermost one. Each such pick breaks the problem of size $n$ into two independent problems of the combined size $n-1$. By the Sum Rule and the Product Rule,

$$
C_{n}=C_{0} \cdot C_{n-1}+C_{1} \cdot C_{n-2}+\ldots+C_{n-1} \cdot C_{0}=\sum_{k=0}^{n-1} C_{k} C_{n-k-1} .
$$

The numbers $C_{n}$ are called Catalan numbers; it can be shown that $C_{n}=C(2 n, n) /(n+1)$.
Homework assignments. (due Friday 03/30).
24A:Rosen5.1-10; 24B:Rosen5.1-22; 24C:Rosen5.1-30

