- 1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.7
- 2. The main message of this lecture:

Some optimization problems of modest size admit a brute force solution: generate all relevant combinations (permutations, etc.) and check them all. A key ingredient in such an approach is generating permutations, combinations, etc.

Definition 23.1. Let A be a linearly ordered finite set. Without loss of generality we may assume that $A = \{1, 2, ..., n\}$ for some positive integer n. A **lexicographic ordering** " \prec " of the set of permutations (of not necessarily equal length) of A is defined by the following condition:

 $a_1 a_2 \cdots a_k \prec b_1 b_2 \ldots b_r$ iff at the first j where a's and b's differ $a_j < b_j$. The empty symbol precedes all other symbols in A.

Example 23.2. Lexicographic ordering of all 3-permutations of $\{1, 2, 3\}$:

$$123 \prec 132 \prec 213 \prec 231 \prec 312 \prec 321$$

Lexicographic ordering of all possible permutations of $\{1, 2, 3\}$:

Example 23.3. Some pairs $a \prec b$ such that b is an immediate successor of a (among 5-permutations of $\{1, 2, 3, 4, 5\}$):

$12345 \prec 12354$	$12453 \prec 12534$
$12354 \prec 12435$	$21345\prec 21354$
$12435 \prec 12453$	54321 - None

Here is a general method of generating "the next" permutation.

1. Given a permutation $a_1 a_2 \dots a_n$ (for, example, 12453) find a_i that precedes a tail ordered in the reverse order

 $\dots a_i < a_{i+1} > a_{i+2} > \dots > a_{n-1} > a_n$

(here it is 4 < 5 > 3, i.e. $a_i = 4$). If there is no such a_i then the whole permutation is in the reverse order and it is the largest possible in the lexicographic ordering.

2. Find $b_i = \text{minimum of } a_{i+1}, a_{i+2} \dots a_n$ which is greater than a_i (here $b_i = 5$). Put $b_{i+1}, b_{i+2}, \dots, b_n$ to be the remaining of $\{a_i, a_{i+1} \dots a_n\}$ in increasing order (here 34).

3. $NEXT = a_1 a_2 \dots a_{i-1} b_i b_{i+1} \dots b_n$ (here 12534).

Example 23.4. All 4-permutations in their lexicographic order generated by the above algorithm:

 $1234 \prec 1243 \prec 1324 \prec 1342 \prec 1423 \prec 1432 \prec 2134 \prec \ldots \prec 4213 \prec 4231 \prec 4312 \prec 4321$

Example 23.5. The *NEXT* to 78312654 is 78314256.

Generating combinations is easier. Each combination X i.e. a subset $X \subseteq A = \{1, 2, ..., n\}$, can be identified with a bit string $\sigma_1 \sigma_2 ... \sigma_n$ where

$$\sigma_i = \begin{cases} 1, & \text{if } i \in X \\ 0, & \text{if } i \notin X \end{cases}$$

There is a natural order on binary strings: increasing binary expansions.

Example 23.6. The next largest string after 1001101011 is 1001101100.

To produce all binary expansions of length n, start with the string $\underbrace{000\ldots 0}_{n}$. Then successively find the next largest expansion until the bit string $\underbrace{111\ldots 1}_{n}$ is obtained.

Example 23.7. n = 3. As you see, the natural ordering on bit strings induces some peculiar ordering on subsets

Example 23.8. Find the next largest combination of $\{1, 2, 3, 4, 5\}$ for $X = \{2, 4, 5\}$. First, we convert X into a bit string $\sigma(X) = 01011$. Then we find the *next* bit string 01100, and convert it back to a subset: $Y = \{2, 3\}$. The resulting Y is the next largest after X.

Happy spring break. Have fun!

Homework assignments. (The second installment due Friday 03/30) 23A:Rosen4.7-4; 23B:Rosen4.7-6.