1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.7
2. The main message of this lecture:

Some optimization problems of modest size admit a brute force solution: generate all relevant combinations (permutations, etc.) and check them all. A key ingredient in such an approach is generating permutations, combinations, etc.

Definition 23.1. Let A be a linearly ordered finite set. Without loss of generality we may assume that $A=\{1,2, \ldots, n\}$ for some positive integer n. A lexicographic ordering " \prec " of the set of permutations (of not necessarily equal length) of A is defined by the following condition:
$a_{1} a_{2} \cdots a_{k} \prec b_{1} b_{2} \ldots b_{r}$ iff at the first j where a 's and b 's differ $a_{j}<b_{j}$. The empty symbol precedes all other symbols in A.

Example 23.2. Lexicographic ordering of all 3 -permutations of $\{1,2,3\}$:

$$
123 \prec 132 \prec 213 \prec 231 \prec 312 \prec 321
$$

Lexicographic ordering of all possible permutations of $\{1,2,3\}$:

$$
1 \prec 12 \prec 123 \prec 13 \prec 132 \prec 2 \prec 21 \prec 213 \prec 23 \prec 231 \prec 3 \prec 31 \prec 312 \prec 32 \prec 321
$$

Example 23.3. Some pairs $a \prec b$ such that b is an immediate successor of a (among 5permutations of $\{1,2,3,4,5\}$):

$$
\begin{array}{rlrl}
12345 & \prec 12354 & 12453 & \prec 12534 \\
12354 & \prec 12435 & 21345 & \prec 21354 \\
12435 & \prec 12453 & & 54321-\text { None }
\end{array}
$$

Here is a general method of generating "the next" permutation.

1. Given a permutation $a_{1} a_{2} \ldots a_{n}$ (for, example, 12453) find a_{i} that precedes a tail ordered in the reverse order

$$
\ldots a_{i}<a_{i+1}>a_{i+2}>\ldots>a_{n-1}>a_{n}
$$

(here it is $4<5>3$, i.e. $a_{i}=4$). If there is no such a_{i} then the whole permutation is in the reverse order and it is the largest possible in the lexicographic ordering.
2. Find $b_{i}=$ minimum of $a_{i+1}, a_{i+2} \ldots a_{n}$ which is greater than a_{i} (here $b_{i}=5$). Put $b_{i+1}, b_{i+2}, \ldots, b_{n}$ to be the remaining of $\left\{a_{i}, a_{i+1} \ldots a_{n}\right\}$ in increasing order (here 34).
3. $N E X T=a_{1} a_{2} \ldots a_{i-1} b_{i} b_{i+1} \ldots b_{n}$ (here 12534).

Example 23.4. All 4-permutations in their lexicographic order generated by the above algorithm:

$$
1234 \prec 1243 \prec 1324 \prec 1342 \prec 1423 \prec 1432 \prec 2134 \prec \ldots \prec 4213 \prec 4231 \prec 4312 \prec 4321
$$

Example 23.5. The $N E X T$ to 78312654 is 78314256.

Generating combinations is easier. Each combination X i.e. a subset $X \subseteq A=\{1,2, \ldots, n\}$, can be identified with a bit string $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ where

$$
\sigma_{i}= \begin{cases}1, & \text { if } i \in X \\ 0, & \text { if } i \notin X\end{cases}
$$

There is a natural order on binary strings: increasing binary expansions.
Example 23.6. The next largest string after 1001101011 is 1001101100.
To produce all binary expansions of length n, start with the string $\underbrace{000 \ldots 0}$. Then successively find the next largest expansion until the bit string $\underbrace{11 \ldots 1}_{n}$ is obtained.
Example 23.7. $n=3$. As you see, the natural ordering on bit strings induces some peculiar ordering on subsets

000	001	010	011	100	101	110	111
\emptyset	$\{3\}$	$\{2\}$	$\{2,3\}$	$\{1\}$	$\{1,3\}$	$\{1,2\}$	$\{1,2,3\}$

Example 23.8. Find the next largest combination of $\{1,2,3,4,5\}$ for $X=\{2,4,5\}$. First, we convert X into a bit string $\sigma(X)=01011$. Then we find the next bit string 01100 , and convert it back to a subset: $Y=\{2,3\}$. The resulting Y is the next largest after X.

Happy spring break. Have fun!

Homework assignments. (The second installment due Friday 03/30)
23A:Rosen4.7-4; 23B:Rosen4.7-6.

