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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.6

2. The main message of this lecture:

More counting tools covering possible repetitions.

Theorem 22.1. The number of r-permutations of n objects with repetitions is nr.
Proof. Here we are having r positions to fill, n variants to choose from for each of those
positions. By the Product Rule, the total number of variants equals n · n · . . . · n

︸ ︷︷ ︸

r times
= nr.

Example 22.2. 0-1 strings of length r: the total number is 2r. The number of words of length
3 in English (case insensitive) is 263.

Example 22.3. Sampling with replacement. An urn contains 3 blue balls and 5 red ones.
What is the probability of drawing 4 blues balls in a row if a ball is put back into the urn after
it is drawn? Solution (not the optimal one): there are 8 balls total, 3 of them blue, in the urn.
Assume the balls distinguishable. By 22.1, there are 84 possible outcomes (4-permutations with
repetitions out of 8), 34 of them successful (4-permutations with repetitions out of 3 blue balls).
Therefore, p = 34/84 = (3/8)4. A bit more intelligent solution: each drawing is a Bernoulli trial
with the probability of success 3/8. In four independent trials the probability of four successes
is (3/8)4.

Example 22.4. Combinations with repetitions. Imagine an unlimited supply of apples, or-
anges and pears. How many different servings of 4 fruits are there. All apples are indistin-
guishable (otherwise the number of different servings would be unlimited), the same holds for
oranges and pears. Let us try the brute force first: 4A, 4O, 4P, 3A1O, 3A1P, 3O1A, 3O1P,
3P1A, 3P1O, 2A2O, 2A2P, 2O2P, 2A1O1P, 2O1A1P, 2P1A1O, the total number is 15. A gen-
eral method: each combination can be represented by a string of four ∗’s and two |’s as shown
below.

. . . ∗ . . .
︸ ︷︷ ︸

] of apples
| . . . ∗ . . .

︸ ︷︷ ︸

] of oranges
| . . . ∗ . . .

︸ ︷︷ ︸

] of pears

For example, the combination 4A will be represented as ∗ ∗ ∗ ∗ ||, 2A1O1P as ∗ ∗ | ∗ |∗. A
string ∗|| ∗ ∗∗ encodes the combination 1A3P. The total length of a string of ∗’s and |’s )here
it is 6) is the sum of the length of a combination (here it is 4) and the number of types
of objects to choose from minus one (here it is 3 − 1 = 2). Each combination is totally
determined when the exact locations of |’s (or, equivalently, the location of ∗’s) is fixed. Here
it is C(4 + 2, 2) = C(6, 2) = 6!/(4! 2!) = (6 · 5)/2 = 15.

Theorem 22.5. There are C(n + r − 1, r) r-combinations from n elements with repetitions.
Proof. Each such combination is represented by a string of r stars and n − 1 bars. There are
C(n − 1 + r, r) such strings.

Example 22.6. What is a total number of possible combinations of five bills out of $1, $5,
$10, $20, $50, and $100? Apply the formula from 22.5 for the number of 5-combinations
with repetitions (the length of a sample) from 6 elements (the number of types of bills at our
disposal). C(6 + 5 − 1, 5) = C(10, 5) = 10!/(5! 5!) = 252.



Example 22.7. Find the total number of solutions of x1 + x2 + x3 = 100 in nonnegative
integers x1, x2, x3. Surprisingly enough, this number theoretical question is governed by the
same scheme of combinations with repetitions. Indeed, think of x1 as a number of apples, x2 a
number of oranges and x3 as a number of pears out of total 100. Each solution of this equation
can be represented by a string of 100 ∗’s and two |’s:

. . . ∗ . . .
︸ ︷︷ ︸

x1

| . . . ∗ . . .
︸ ︷︷ ︸

x2

| . . . ∗ . . .
︸ ︷︷ ︸

x3

Therefore, we apply the formula from 22.5 for the number of 100-combinations of 3 elements
with repetitions (n = 3, r = 100): C(3 + 100 − 1, 100) = C(102, 100) = C(102, 2) = (102 ·
101)/2 = 5151.

Example 22.8. What is the total number of different permutations of the letters of the word
ILLINOIS? If all the letters in this word were distinct then the total number of permutations
would be 8!. In our situation, however, there are three indistinguishable I’s and two indistin-
guishable L’s. Therefore, real permutation corresponds to 2! · 3! = 12 distinguishable permu-
tations. For example, the original string ILLINOIS is counted 12 times as I1L1L2I2NOI3S,
I1L2L1I2NOI3S, I1L1L2I3NOI3S, etc. The final count is 8!/(2! 3!) = 3360.

Theorem 22.9. The number of different permutations on n objects with n1, n2, . . . , nk indis-
tinguishable objects is

n!
n1! · n2! · . . . · nk!

Proof. If all objects were distinct then we’d have n! permutations. Since ni objects of type i
are indistinguishable we counted each permutation ni! times for each i = 1, 2, . . . , k. The total
count is n!/(n1! · n2! · . . . · nk!).

Example 22.10. Distributing objects into boxes. Find the total number of hands of 5 cards
to each of 4 players from the standard deck of 52 cards. Note that all 52 cards are distinct here.
Hand one has C(52, 5) possible variants. Hand two should be considered under the condition
that hand one is chosen: C(47, 5). Hand three (provided hands one and two are chosen) has
C(42, 5) variants. Finally, hand four (provided hands one, two and three are chosen) has
C(37, 5) variants. By the Product Rule, the total number of four hands is

C(52, 5) · C(47, 5) · C(42, 5) · C(37, 5) =
52!

5! · 5! · 5! · 5! · 32!
The second solution: count the number of 52-permutations with 5, 5, 5, 5, 32 indistinguishable
objects. Indeed, we can start counting not from the deck of 52 cards, but from 52 imagi-
nary positions: 5 in each of the four hands, and 32 remaining ones: (I, 1), (I, 2), . . . , (IV, 5),
(R, 1), . . . , (R, 32). Each distribution of hands may be regarded as an assignment of one of 52
pairs above to 52 individual cards, i.e. the number of 52-permutations of 52 elements with
5, 5, 5, 5, 32 indistinguishable objects

52!
5! · 5! · 5! · 5! · 32!

Theorem 22.11. The number of ways to distribute n distinct objects into k distinct boxes
n1, n2, . . . , nk objects each is

n!
n1! · n2! · . . .! · nk!

Homework assignments. (The first installment due Friday 03/30)
22A:Rosen4.6-10ac; 22B:Rosen4.6-16ad; 22C:Rosen4.6-34; 22D:Rosen4.6-38.


