1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.5
2. The main message of this lecture:

Expected value is the exact equivalent of an "average value" intuition.

Example 21.1. To enter a game one has to pay $\$ 3$. Then a die is rolled, and the player gets paid the number of $\$ \$$ equal to the number of points which the die comes up. Should a player accept the conditions and play this game? Imagine the game has been played 600 times (to get enough statistics). In about $1 / 6$ th of the cases (total about 100) the die comes up 1 and then the player loses $1-3=-2$, the total loss from those will be $100 \cdot(-2)$. Similarly, in $1 / 6$ th of the cases the die comes up 2 and the whole loss is about $100 \cdot(-1)$. When the die shows 3 , the player is even. The contributions of the cases when the die comes up 4,5 or 6 are $100 \cdot 1$ $100 \cdot 2$ and $100 \cdot 3$ respectively. The estimate G of the overall gain/loss is then

$$
G=100 \cdot(-2)+100 \cdot(-1)+100 \cdot 0+100 \cdot 1+100 \cdot 2+100 \cdot 3=300
$$

To get an estimate of the average gain/loss per game take

$$
\begin{gathered}
E=G / 600=\frac{100}{600} \cdot(-2)+\frac{100}{600} \cdot(-1)+\frac{100}{600} \cdot 0+\frac{100}{600} \cdot 1+\frac{100}{600} \cdot 2+100 \cdot 3= \\
=\frac{1}{6} \cdot(-2)+\frac{1}{6} \cdot(-1)+\frac{1}{6} \cdot 0+\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3=\frac{3}{6}=1 / 2
\end{gathered}
$$

The standard reading of this figure: as average, a player gains $\$ 0.5$ per game. Note that the last sum is nothing but

$$
\sum_{i=1}^{6}(\text { probability of } i) \cdot(\text { the gain when } i \text { comes up) }
$$

Example 21.2. A lottery ticket costs $\$ 10$, a probability to win is $1 / 5000000$ and the winner gets $\$ 10000000$. How much a player wins/loses in average? We use the same idea:
$E=\frac{1}{5000000} \cdot(10000000-10)+\left(1-\frac{1}{5000000}\right) \cdot(-10)=2-\frac{10}{5000000}-10+\frac{10}{5000000}=-8 \$$.
The sign "-" indicates that a player loses the average of $\$ 8$ each game.

Definition 21.3.

A random variable $X(t)$ is a function from a sample space S to the set or reals \mathbf{R}.
Example 21.4. The cost function $X(t)$ from the game 21.1 may be regarded as a random variable that maps individual outcomes from the samples space $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ to the real numbers $-2,-1,0,1,2,3$ respectively. In 21.2 the sample space $S=\{W, L\}$ has probabilities $p(W)=1 / 5000000, p(L)=4999999 / 5000000$. The function $X(W)=10000000-10, X(L)=$ -10 is a random variable.

Note that a random variable is neither random nor variable!

Definition 21.5. An expected value (or expectation) of a random variable $X(t)$ is

$$
E(X)=\sum_{s \in S} p(s) \cdot X(s)
$$

Example 21.6. $X(s)$ is the number of Heads out of three flippings of a coin. $X(T T T)=0$, $X(H T T)=X(T H T)=X(T T H)=1, X(H H T)=X(H T H)=X(T H H)=2, X(H H H)=3$.

$$
\begin{gathered}
E(X)=\frac{1}{8} \cdot 0+\frac{1}{8} \cdot 1+\frac{1}{8} \cdot 1+\frac{1}{8} \cdot 1+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 3= \\
=\frac{1}{8} \cdot 0+3 \cdot \frac{1}{8} \cdot 1+3 \cdot \frac{1}{8} \cdot 2+\frac{1}{8} \cdot 1=\frac{3}{2}
\end{gathered}
$$

A grouping in a formula for expected value above can be generalized to a practical formula for computing the expected value:

$$
E(X)=\sum_{r \in X(S)} p(X=r) \cdot r
$$

Example 21.7. $X(s)=$ the sum on a pair of dice: $X(1,1)=2, \ldots, X(6,6)=12$. Then

$$
\begin{gathered}
E(X)=2 \cdot p(X=2)+3 \cdot p(X=3)+\ldots+11 \cdot p(X=11)+12 \cdot p(X=12)= \\
=2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+4 \cdot \frac{3}{36}+5 \cdot \frac{3}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36}+8 \cdot \frac{5}{36}+9 \cdot \frac{4}{36}+10 \cdot \frac{3}{36}+11 \cdot \frac{2}{36}+12 \cdot \frac{1}{36}=7
\end{gathered}
$$

Theorem 21.8. For X, Y random variables on a space S

$$
E(X+Y)=E(X)+E(Y), E(a X)=a E(X), E(a X+b)=a E(X)+b
$$

Proof. $E(X+Y)=\sum p(s)[X(s)+Y(s)]=\sum p(s) X(s)+\sum p(s) Y(s)=E(X)+E(Y)$
$E(a X)=\sum p(s) a X(s)=a \sum p(s) X(s)=a E(X), E(b)=\sum p(s) \cdot b=b \sum p(s)=b \cdot 1=b$, $E(a X+b)=E(a X)+E(b)=a E(X)+b$.
Definition 21.9. Random variables X and Y are independent if

$$
p(X=a \text { and } Y=b)=p(X=a) \cdot p(Y=b) \text { for any } a \in X(S), b \in Y(S)
$$

Examples. Two dice, $X(i, j)=i, Y(i, j)=j$. Then $p(X=i$ and $X=j)=p(i, j)=1 / 36$. On the other hand, $p(X=i)=p(Y=j)=1 / 6$, therefore $p(X=i) \cdot p(Y=j)=1 / 36$. Within the same model, X and $Z=X+Y$ are not independent, since $p(X=1$ and $Y=10)=0$ whereas $p(X=1)$ and $p(Z)=1 / 12$.
Theorem 21.10. If X, Y are independent then $E(X \cdot Y)=E(X) \cdot E(Y)$.
Definition 21.11. The variance of X :

$$
V(X)=E(X-E(X))^{2}=\sum_{s \in S}[X(s)-E(X)]^{2} \cdot p(s)
$$

The standard deviation $\sigma(X)=\sqrt{V(X)}$. Note that $V(X)=E(X-E(X))^{2}=$

$$
\begin{aligned}
& =\left[X^{2}-2 X \cdot E(X)+[E(X)]^{2}\right]=E\left(X^{2}\right)-E(2 X \cdot E(X))+[E(X)]^{2}= \\
& =E\left(X^{2}\right)-2 \cdot E(X) \cdot E(X)+[E(X)]^{2}=E\left(X^{2}\right)-[E(X)]^{2} .
\end{aligned}
$$

Theorem 21.12. If $X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent, then
$V\left(X_{1}+\ldots+X_{n}\right)=V\left(X_{1}\right)+\ldots+V\left(X_{n}\right)$.
Example: two dice $X(i, j)=i, Y(i, j)=j$ are independent, therefore, $V(X+Y)=V(X)+$ $V(Y) . V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\left(1^{2}+2^{2}+\ldots+6^{2}\right) \cdot(1 / 6)-[(1+2+\ldots+6) \cdot(1 / 6)]^{2}=$ $35 / 12=V(Y)$. Therefore $V(X+Y)=35 / 12+35 / 12=35 / 6$
Homework assignments. (due Friday 03/16)
21A:Rosen4.5-30; 21B:Rosen4.5-32; 21C:Rosen4.5-34; 21D:Rosen4.5-44.

