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January 24, 2001

1. Reading for Lecture 2: K. Rosen Discrete Mathematics and Its Applications, 1.3

2. The main message of the first lecture:

The whole of mathematics and some portions of natural
language can be adequately represented using predicates
and quantifiers for all and there exists. An important tech-
nical trick: indiwidual variables, which were not explicitly
present in the natural language.

The logic of propositions is decidable, but has a very limited expressive power. In particular, it
cannot emulate even the most basic properties of addition and multiplication on integers. Such
syntactic constructions as everybody loves somebody, nobody loves a looser, there is the least
natural number but there is no the least rational, contain references to properties common to all
elements of very large or even infinite domain (all persons, all natural numbers, all rationals).
An elegant formalization of such properties comes from mathematics and is based on notions
of individual variables and predicates.

Definition 2.1. An individual variable is a letter (usually z,y, z, .. ., possibly with indices)
together with its domain (or the universe of disclosure), which is just some nonempty
set. A predicate is a property of some number of objects of the domain. For example, let x
be a variable over integers (the domain!), and P(x) denote the predicate “z is even”. Other
predicates over integers: x > 3, “z is a whole square”, “r is a prime”, etc. Predicates may
depend on more than one variables: = < y, “x loves y”, “z is a parent of y”, x+y = z, program
p returns y in an input z, etc. A predicate P(x) may be regarded as propositional function
depending upon z: for each specific element x of the domain P(z) becomes a proposition, i.e.
something which is either true or false. For example, if P(z) is “z is even”, then P(2) is true,
but P(3) is false.

Definition 2.2. Let P(z) be a predicate. The universal quantification of P(z) is a propo-
sition Va P(x) meaning P(x) holds for all values from the domain of x. Examples (here z,y, z
are nonnegative integers):

Vz(z is even) (false) Vz(zr > 2) (false)

VaVy(x <yVy <z) (true) VaVyVz((z <yAy<z)— x < z) (true)

Example 2.3. Translating a natural language sentence into a formula with quantifiers. Every
student in this room studies discrete mathematics. Introduce variables (English does not nor-
mally have them!) and predicates S(z): = is a student, R(x): z is in this room,

DM(x): z studies discrete mathematics. Write down a formula: Vz((S(x) A R(xz)) — DM (x)).
This is easy, but takes some practice.

Definition 2.4. The existential quantification of a predicate P(z) is a proposition 3z P(x)
meaning P(z) holds for some value from the domain of z. Examples (here z,y are variables
over reals):

dz(z < 2) (true) Fz(z =z +1) (false) FzVy(zr <y) (false) VyIz(z <y) (true)

Example 2.5. More translating natural language sentences into formulas. Here M (z) denotes
“r is a mathematician”, P(z) — “z understands politics”, L(z,y) — “z loves y”.



Someone in this room does not study discrete math 3x(R(x) A ~DM(z))

No mathematician understands politics Va(M(x) — —P(x))
Everybody loves somebody VrIyL(z,y)
Someone loves nobody d2Vy-L(z,y)

Duality of quantifiers (follows immediately from the definitions):
-VeP(z) & Jz—-P(z) -dzP(z) & Va—-P(z)
Examples: Not everyone studies math < There is someone who does not study math
Nobody is a fool <  Ewverybody is not a fool.

Negating quantifies sentences. —Vz3yP(z,y) < Jz—-JyP(z,y) < JzVy—-P(z,y).
A rule: change all the quantifiers to their duals and negate the core.

Redundancies in quantifiers. V can be expressed via 3 and vice versa. Indeed,
VzP(z) & —-3z-P(x) JzP(z) & —Vz-P(x)
Free and bound variables. A question whether x < y is true (x,y positive integers) does
not have a definite answer, since it depends on specific values of z and y, which are free here,
i.e. are not in the scope of any quantifier. Suppose we bind one of the variables by a quantifier,
say Jz(z < y). The truth value is still not determined! The variable z is already bound by 3z,
but y remains free, and a truth value of a sentence depends on specific choice of y: Jz(x < 1)
is false (here y = 1), but Jz(x < 2) is true (y = 2). Binding y by quantifiers leads to different
truth values: Vy3z(z < y) is false, JyTz(x < y) is true. Bound variables can be safely renamed
by a fresh variable:
VedyA(z,y) <  YuIvA(u,v).

Finite domains. For a finite domain D = {d;,ds,...,d,} a formula Yz A(z) is equivalent to
A(dy) NA(da) A ... N A(dy) and Fz(A(x) is equivalent to A(dy) V A(d2) V...V A(d,). These
indicates that V may be regarded as a sort of a (possibly infinite) conjunction whereas 3 is a
sort of a (possibly infinite) disjunction.

Distributing quantifiers through boolean connectives. The following equivalences follow
immediately from definitions:

Vz(A(z) A B(z)) < VzA(z) AVzB(z) (V commutes with A)

dz(A(z) V B(z)) < 3zA(x)V IzB(z) (3 commutes with V).
Note that generally speaking neither Vz(A(z) V B(z)) < VzA(z)V VzB(z), nor 3z(A(x) A
B(z)) < 3zA(z) A 3zB(z). Indeed, let A(z) be “z is even” and B(z) be “x is odd” for
integers. Then Yz (A(z) V B(z)) holds, but not VzA(x) V VzB(z). Likewise, 3zA(x) A JzB(x)
is true, but Jz(A(x) A B(z)) is false.

Quantifiers and implication. Let C' do not depend on z. Then

Vz(C — A(r)) & C — VzA(zx) Ve(A(z) = C) & JzA(z) —» C
dz(C — A(x)) & C — JzA(x) dz(A(r) - C) & VzA(z) = C

Homework assignments. (due Friday 02/02).

A. 1.3 6,20

B. Rewrite =Vz3y(A(z,y) — B(z,y)) so that no negation appears outside quantifier or an
expression involving logical connectives (i.e. move — inside as much as possible).

C. Show that Vz(A(x) — B(z)) — (VzA(z) — VzB(x)) holds for all predicates A(z) and
B(z). Show that the inverse implication does not necessarily hold, i.e. give an example of
specific predicates A(z) and B(x) such that VzA(z) — VaB(x) is true but Vz(A(z) — B(x))
is false.



