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1. Reading for Lecture 2: K. Rosen Discrete Mathematics and Its Applications, 1.3

2. The main message of the �rst lecture:

The whole of mathematics and some portions of natural
language can be adequately represented using predicates
and quanti�ers for all and there exists. An important tech-
nical trick: individual variables, which were not explicitly
present in the natural language.

The logic of propositions is decidable, but has a very limited expressive power. In particular, it
cannot emulate even the most basic properties of addition and multiplication on integers. Such
syntactic constructions as everybody loves somebody, nobody loves a looser, there is the least

natural number but there is no the least rational, contain references to properties common to all
elements of very large or even in�nite domain (all persons, all natural numbers, all rationals).
An elegant formalization of such properties comes from mathematics and is based on notions
of individual variables and predicates.

De�nition 2.1. An individual variable is a letter (usually x; y; z; : : :, possibly with indices)
together with its domain (or the universe of disclosure), which is just some nonempty
set. A predicate is a property of some number of objects of the domain. For example, let x
be a variable over integers (the domain!), and P (x) denote the predicate \x is even". Other
predicates over integers: x � 3, \x is a whole square", \x is a prime", etc. Predicates may
depend on more than one variables: x < y, \x loves y", \ x is a parent of y", x+y = z, program
p returns y in an input x, etc. A predicate P (x) may be regarded as propositional function

depending upon x: for each speci�c element x of the domain P (x) becomes a proposition, i.e.
something which is either true or false. For example, if P (x) is \x is even", then P (2) is true,
but P (3) is false.

De�nition 2.2. Let P (x) be a predicate. The universal quanti�cation of P (x) is a propo-
sition 8xP (x) meaning P(x) holds for all values from the domain of x. Examples (here x; y; z
are nonnegative integers):

8x(x is even) (false) 8x(x > 2) (false)
8x8y(x � y _ y � x) (true) 8x8y8z((x � y ^ y � z)! x � z) (true)

Example 2.3. Translating a natural language sentence into a formula with quanti�ers. Every
student in this room studies discrete mathematics. Introduce variables (English does not nor-
mally have them!) and predicates S(x): x is a student, R(x): x is in this room,
DM(x): x studies discrete mathematics. Write down a formula: 8x((S(x) ^R(x))! DM(x)).
This is easy, but takes some practice.

De�nition 2.4. The existential quanti�cation of a predicate P (x) is a proposition 9xP (x)
meaning P(x) holds for some value from the domain of x. Examples (here x; y are variables
over reals):

9x(x < 2) (true) 9x(x = x+ 1) (false) 9x8y(x � y) (false) 8y9x(x � y) (true)

Example 2.5. More translating natural language sentences into formulas. Here M(x) denotes
\x is a mathematician", P (x) { \x understands politics", L(x; y) { \x loves y".



Someone in this room does not study discrete math 9x(R(x) ^ :DM(x))
No mathematician understands politics 8x(M(x)! :P (x))
Everybody loves somebody 8x9yL(x; y)
Someone loves nobody 9x8y:L(x; y)

Duality of quanti�ers (follows immediately from the de�nitions):
:8xP (x) , 9x:P (x) :9xP (x) , 8x:P (x)

Examples: Not everyone studies math , There is someone who does not study math

Nobody is a fool , Everybody is not a fool.

Negating quanti�es sentences. :8x9yP (x; y) , 9x:9yP (x; y) , 9x8y:P (x; y).
A rule: change all the quanti�ers to their duals and negate the core.

Redundancies in quanti�ers. 8 can be expressed via 9 and vice versa. Indeed,
8xP (x) , :9x:P (x) 9xP (x) , :8x:P (x)

Free and bound variables. A question whether x < y is true (x; y positive integers) does
not have a de�nite answer, since it depends on speci�c values of x and y, which are free here,
i.e. are not in the scope of any quanti�er. Suppose we bind one of the variables by a quanti�er,
say 9x(x < y). The truth value is still not determined! The variable x is already bound by 9x,
but y remains free, and a truth value of a sentence depends on speci�c choice of y: 9x(x < 1)
is false (here y = 1), but 9x(x < 2) is true (y = 2). Binding y by quanti�ers leads to di�erent
truth values: 8y9x(x < y) is false, 9y9x(x < y) is true. Bound variables can be safely renamed
by a fresh variable:

8x9yA(x; y) , 8u9vA(u; v).

Finite domains. For a �nite domain D = fd1; d2; : : : ; dng a formula 8xA(x) is equivalent to
A(d1) ^ A(d2) ^ : : : ^ A(dn) and 9x(A(x) is equivalent to A(d1) _ A(d2) _ : : : _ A(dn). These
indicates that 8 may be regarded as a sort of a (possibly in�nite) conjunction whereas 9 is a
sort of a (possibly in�nite) disjunction.

Distributing quanti�ers through boolean connectives. The following equivalences follow
immediately from de�nitions:

8x(A(x) ^B(x)) , 8xA(x) ^ 8xB(x) (8 commutes with ^)
9x(A(x) _B(x)) , 9xA(x) _ 9xB(x) (9 commutes with _).

Note that generally speaking neither 8x(A(x) _ B(x)) , 8xA(x) _ 8xB(x), nor 9x(A(x) ^
B(x)) , 9xA(x) ^ 9xB(x). Indeed, let A(x) be \x is even" and B(x) be \x is odd" for
integers. Then 8x(A(x) _B(x)) holds, but not 8xA(x) _ 8xB(x). Likewise, 9xA(x) ^ 9xB(x)
is true, but 9x(A(x) ^B(x)) is false.

Quanti�ers and implication. Let C do not depend on x. Then

8x(C ! A(x)) , C ! 8xA(x) 8x(A(x)! C) , 9xA(x)! C

9x(C ! A(x)) , C ! 9xA(x) 9x(A(x)! C) , 8xA(x)! C

Homework assignments. (due Friday 02/02).
A. 1.3 6,20
B. Rewrite :8x9y(A(x; y)! B(x; y)) so that no negation appears outside quanti�er or an

expression involving logical connectives (i.e. move : inside as much as possible).
C. Show that 8x(A(x) ! B(x)) ! (8xA(x) ! 8xB(x)) holds for all predicates A(x) and

B(x). Show that the inverse implication does not necessarily hold, i.e. give an example of
speci�c predicates A(x) and B(x) such that 8xA(x) ! 8xB(x) is true but 8x(A(x) ! B(x))
is false.


