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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.3

2. The main message of this lecture:

Permutations, combinations, binomial coefficients are all applica-
tions of the Product Rule of counting.

Definition 18.1. A k-permutation is an ordered k-tuple of distinct objects.

Example 18.2. S = {a, b, c}. All 3-permutations: (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b),
(c, b, a). All 2-permutations: (a, b), (a, c), (b, a), (b, c), (c, a), (c, b).

Theorem 18.3. The total number of r-permutations of a set with n distinct elements is
P (n, r) = n · (n − 1) · (n − 2) · . . . · (n − r + 1) = n!/(n − r)!.
Proof. There are n ways of choosing the first element of an r-permutation, n− 1 ways for the
second element out of n− 1 remaining, n− 2 ways for the third, etc. By the Product Rule, the
total number of variants is the product n · (n − 1) · (n − 2) · . . . · (n − r + 1).

Example 18.4. The number of ways to award three (gold, silver and bronze) medals to ten
players is P (10, 3) = 10 · 9 · 8 = 720. Indeed, each variant is a 3-permutation of players.

Corollary 18.5. The number of permutations of an n-element set is P (n, n) = n!.

Definition 18.6. An r-combination of a set S is an r-element subset of S. The total number
of r-combinations of n-element set is denoted by C(n, r), also called a binomial coefficient.

Alternative notations:
(n
r

)
, Cr

n.

Example 18.7. Mind the difference between r-permutations and r-combinations: the former
are ordered r-tuples, whereas the latter are not ordered sets of distinct elements. Therefore
there are less combinations than permutations. For example, consider the same S = {a, b, c}.
There are only three 2-combinations {a, b}, {a, c} and {b, c} (versus six 2-permutations). In
fact, one 2-combination (e.g. {b, c} corresponds to two 2-permutations (b, c) and (c, b).

Theorem 18.8.
C(n, r) =

n!
r! (n − r)!

Proof. Each r-combination (as an r-element set) generates P (r, r) permutations of length r
(i.e. r-permutation). Therefore, the total number of r-permutations equals to the total number
of r-combinations taken P (r, r) times: P (n, r) = C(n, r) · P (r, r). Hence

C(n, r) =
P (n, r)
P (r, r)

=
n!

(n − r)! r!

Example 18.9. The number of ways to pick a team of three hackers out of 20 to represent
Cornell at a competition in Europe is

C(20, 3) =
20!

3! (20 − 3)!
=

20!
3! 17!

=
20 · 19 · 18

3!
= 20 · 19 · 3 = 1140



There is a trivial identity about binomial coefficients: C(n, r) = C(n, n − r). Indeed,

C(n, n − r) =
n!

(n − r)! (n − (n − r))!
=

n!
(n − r)! (n − n + r))!

=
n!

(n − r)! r!
= C(n, r)

Theorem 18.10. (Pascal’s Identity) C(n + 1, k) = C(n, k − 1) + C(n, k).
Proof. Let T be a n+1 element set and a∈T . Put S = T−{a}; obviously, |S| = n. The number
of k-combinations X ⊆ T such that a∈X equals to C(n, k−1). Indeed, there is a one-to-one
correspondence f between the set of such k-combinations and the set of k−1-combinations in
S: f(X) = X−{a}. The number of k-combinations X ⊆ T such that a 6∈ X equals to the
number of k-subsets of S, i.e. to C(n, k). By the Sum Rule, C(n+1, k) = C(n, k−1)+C(n, k).

Pascal Triangle is a table below, were the n-th row consists of the binomial coefficients
C(n, 0) = 1, C(n, 1) = n, . . ., C(n, n − 1) = n, C(n, n) = 1. Pascal’s Identity shows that an
element in n-th row, n 6= 1, is a sum of two adjacent entries above it.

n

1 0
1 1 1

1 2 1 2
1 3 3 1 3

1 4 6 4 1 4
1 5 10 10 5 1 5

1 6 15 20 15 6 1 6
1 7 21 35 35 21 7 1 7

Theorem 18.11.
n∑

r=0

C(n, r) = 2n (in the alternative notation
n∑

r=0

(n
r

)
= 2n).

Proof. The total number of subsets of an n-element set is 2n. On the other hand this number
is the sum of the numbers of r element subsets for r ranging from 0 to n, i.e.

2n = C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n − 2) + C(n, n − 1) + C(n, n)

Example 18.12. (x + y)3 = (x + y)(x + y)(x + y) =
= xxx︸︷︷︸

x3

+ xxy + xyx + yxx︸ ︷︷ ︸
x2y

+ xyy + yxy + yyx︸ ︷︷ ︸
xy2

+ yyy︸︷︷︸
y3

= x3 + 3x2y + 3xy2 + y3.

Theorem 18.13. (The Binomial Theorem)

(x+ y)n =
(n

0

)
xn +

(n
1

)
xn−1y +

(n
2

)
xn−2y2 + . . . +

( n
n − 2

)
x2yn−2 +

( n
n − 1

)
xyn−1 +

(n
n

)
yn

Proof. (x + y)n = (x + y)(x + y) . . . (x + y). To get xn−jyj in the expansion we have a choice
of n− j terms (x + y) out of n available to pick x from (the rest j terms (x + y) would donate
y’s). The total number of xn−jyj’s in the expansion will then be C(n, n − j).

Corollary 18.14. C(n, 0) − C(n, 1) + C(n, 2) − . . . + (−1)n−1C(n, n− 1) + (−1)nC(n, n) = 0
Proof. In the binomial theorem put x = 1, y = −1.

Example 18.15. (x−2y)6 = x6−6 · 2x5y+15 · 4x4y2−20 · 8x3y3+15 · 16x2y4−6 · 32xy5+64y6.

Homework assignments. (due Friday 03/09).
18A:Rosen4.3-8; 18B:Rosen4.3-14; 18C:Rosen4.3-32; 18D:Rosen4.3-38.


