1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.3
2. The main message of this lecture:

Permutations, combinations, binomial coefficients are all applica-
tions of the Product Rule of counting.
Definition 18.1. A k-permutation is an ordered k-tuple of distinct objects.
Example 18.2. $S=\{a, b, c\}$. All 3-permutations: $(a, b, c),(a, c, b),(b, a, c),(b, c, a),(c, a, b)$, (c, b, a). All 2-permutations: $(a, b),(a, c),(b, a),(b, c),(c, a),(c, b)$.
Theorem 18.3. The total number of r-permutations of a set with n distinct elements is $P(n, r)=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)=n!/(n-r)!$.
Proof. There are n ways of choosing the first element of an r-permutation, $n-1$ ways for the second element out of $n-1$ remaining, $n-2$ ways for the third, etc. By the Product Rule, the total number of variants is the product $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)$.
Example 18.4. The number of ways to award three (gold, silver and bronze) medals to ten players is $P(10,3)=10 \cdot 9 \cdot 8=720$. Indeed, each variant is a 3 -permutation of players.
Corollary 18.5. The number of permutations of an n-element set is $P(n, n)=n!$.
Definition 18.6. An r-combination of a set S is an r-element subset of S. The total number of r-combinations of n-element set is denoted by $C(n, r)$, also called a binomial coefficient.
Alternative notations: $\binom{n}{r}, C_{n}^{r}$.
Example 18.7. Mind the difference between r-permutations and r-combinations: the former are ordered r-tuples, whereas the latter are not ordered sets of distinct elements. Therefore there are less combinations than permutations. For example, consider the same $S=\{a, b, c\}$. There are only three 2-combinations $\{a, b\},\{a, c\}$ and $\{b, c\}$ (versus six 2-permutations). In fact, one 2-combination (e.g. $\{b, c\}$ corresponds to two 2-permutations (b, c) and (c, b).

Theorem 18.8.

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

Proof. Each r-combination (as an r-element set) generates $P(r, r)$ permutations of length r (i.e. r-permutation). Therefore, the total number of r-permutations equals to the total number of r-combinations taken $P(r, r)$ times: $P(n, r)=C(n, r) \cdot P(r, r)$. Hence

$$
C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!r!}
$$

Example 18.9. The number of ways to pick a team of three hackers out of 20 to represent Cornell at a competition in Europe is

$$
C(20,3)=\frac{20!}{3!(20-3)!}=\frac{20!}{3!17!}=\frac{20 \cdot 19 \cdot 18}{3!}=20 \cdot 19 \cdot 3=1140
$$

There is a trivial identity about binomial coefficients: $C(n, r)=C(n, n-r)$. Indeed,

$$
C(n, n-r)=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{(n-r)!(n-n+r))!}=\frac{n!}{(n-r)!r!}=C(n, r)
$$

Theorem 18.10. (Pascal's Identity) $C(n+1, k)=C(n, k-1)+C(n, k)$.
Proof. Let T be a $n+1$ element set and $a \in T$. Put $S=T-\{a\}$; obviously, $|S|=n$. The number of k-combinations $X \subseteq T$ such that $a \in X$ equals to $C(n, k-1)$. Indeed, there is a one-to-one correspondence f between the set of such k-combinations and the set of $k-1$-combinations in $S: f(X)=X-\{a\}$. The number of k-combinations $X \subseteq T$ such that $a \notin X$ equals to the number of k-subsets of S, i.e. to $C(n, k)$. By the Sum Rule, $C(n+1, k)=C(n, k-1)+C(n, k)$.
Pascal Triangle is a table below, were the n-th row consists of the binomial coefficients $C(n, 0)=1, C(n, 1)=n, \ldots, C(n, n-1)=n, C(n, n)=1$. Pascal's Identity shows that an element in n-th row, $n \neq 1$, is a sum of two adjacent entries above it.

							1								

Theorem 18.11.

$$
\sum_{r=0}^{n} C(n, r)=2^{n} \quad\left(\text { in the alternative notation } \quad \sum_{r=0}^{n}\binom{n}{r}=2^{n}\right) .
$$

Proof. The total number of subsets of an n-element set is 2^{n}. On the other hand this number is the sum of the numbers of r element subsets for r ranging from 0 to n, i.e.

$$
2^{n}=C(n, 0)+C(n, 1)+C(n, 2)+\ldots+C(n, n-2)+C(n, n-1)+C(n, n)
$$

Example 18.12. $(x+y)^{3}=(x+y)(x+y)(x+y)=$

$$
=\underbrace{x x x}_{x^{3}}+\underbrace{x x y+x y x+y x x}_{x^{2} y}+\underbrace{x y y+y x y+y y x}_{x y^{2}}+\underbrace{y y y}_{y^{3}}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} .
$$

Theorem 18.13. (The Binomial Theorem)

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots+\binom{n}{n-2} x^{2} y^{n-2}+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

Proof. $(x+y)^{n}=(x+y)(x+y) \ldots(x+y)$. To get $x^{n-j} y^{j}$ in the expansion we have a choice of $n-j$ terms $(x+y)$ out of n available to pick x from (the rest j terms $(x+y)$ would donate y 's). The total number of $x^{n-j} y^{j}$'s in the expansion will then be $C(n, n-j)$.
Corollary 18.14. $C(n, 0)-C(n, 1)+C(n, 2)-\ldots+(-1)^{n-1} C(n, n-1)+(-1)^{n} C(n, n)=0$ Proof. In the binomial theorem put $x=1, y=-1$.
Example 18.15. $(x-2 y)^{6}=x^{6}-6 \cdot 2 x^{5} y+15 \cdot 4 x^{4} y^{2}-20 \cdot 8 x^{3} y^{3}+15 \cdot 16 x^{2} y^{4}-6 \cdot 32 x y^{5}+64 y^{6}$.
Homework assignments. (due Friday 03/09).
18A:Rosen4.3-8; 18B:Rosen4.3-14; 18C:Rosen4.3-32; 18D:Rosen4.3-38.

