
CS280, Spring 2001 Handout 16
February 26, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 3.5

2. The main message of this lecture:

A syntactic correctness of a program is easy to verify (compilers do
it). A semantic correctness stating that the program will be produc-
ing the right output is impossible to verify automatically. Semantic
correctness usually consists of two parts: a partial correctness stat-
ing that the correct answer is obtained if the program terminates,
and a proof that the program always terminates.

Proving semantical correctness automatically is impossible.

Theorem 16.1. There is no algorithm to decide, given any program P and input x, whether
P will eventually halt.
Proof. Imagine an operating system Φ capable of compiling and executing any program P
on any input y. Since every input is a string of characters in a special input alphabet, we
may regards Φ as a function of two string arguments x = the code of a program P , and y =
an input of P such that for any given x Φ(x, y) ∼= P (y). Here ∼= means that both parts are
simultaneously defined or not defined, and if they are defined their values coincide. Suppose the
halting problem is decidable, then there is a computable function f(x) from strings to {0, 1}:

f(x) =

{
0, if Φ(x, x) halts
1, if Φ(x, x) does not halt

Consider another function g(x) such that

g(x) =

{
0, if f(x) = 1,
loops forever, if f(x) = 0

Here is a description of a program that computes g: ”Given x run f(x). If f(x) = 1, print 0
and halt. Otherwise, loop forever.” Let i be a program code for g. Then

Φ(i, i) halts ⇔ g(i) = 0 ⇔ f(i) = 1 ⇔ Φ(i, i) does not halt,

which contradicts the assumption that the halting problem is decidable.

Definition 16.2. A program segment S is said to be partially correct with respect to the
initial assertion p and the final assertion q if whenever p holds for the initial values of S
and S terminates, then q holds for the output values of S. Notation: p{S}q is also known as
the Hoare implication1

Example 16.3. Show that the program segment S
y := 2
z = x + y

is correct with respect to

the initial assertion x = 3 and the final assertion z = 5.
Termination is obvious since there are not loops there and the execution stops after performing
the assignments. The partial correctness means that the Hoare implication p{S}q holds in this

1Tony Hoare, an Oxford professor, was recently knighted by the British Queen.

case. Note, that S in fact depends on x, therefore S = S(x), and a more proper notation for
the Hoare implication would be p{S(p)}q. A simple analysis of the assignments made by S
immediately convinces us that if p (i.e. x = 3) holds before S has been executed, then q (i.e.
z = 5) holds afterwards. Therefore, p{S}q is true.

A general strategy of proving correctness of a program P is decomposing P into smaller man-
ageable segments S1, S2, S3 . . . corresponding to elementary programmistic steps: assignments,
loops, conditional branching, etc. and then proving every segment Si correct for corresponding
matching initial and final assertions. Each elementary segment is treated by its own inference
rule for the Hoare implication.

Definition 16.4. The composition rule covers the task of agreeing correctness proofs of two
consecutive segments S1 and S2. Notation: S1 : S2 stands for the composite segment consisting
of S1 followed by S2. Suppose also that we have already established individual correctness of
S1 and S2 with respect to matching conditions, i.e. p{S1}q and q{S2}r both hold. Then

p{S1}q
q{S2}r

p{S1 : S2}r
Definition 16.5. A program segment “if condition then S” is treated by the inference rule

(p ∧ condition){S}q
(p ∧ ¬condition) → q

p{if condition then S}q
Example 16.6. Show that “if x > y then y := x” is correct with respect to the initial
assertion T (i.e. true) and the final assertion y ≥ x. Again, termination is obvious. According
to the standard semantics of “if . . . then” operator, both premises of the rule 16.5 take place,
i.e. (T ∧ x > y){y := x}y ≥ x and (T ∧ ¬x > y) → y ≥ x. Therefore we can conclude
T{if x > y then y := x}y ≥ x.

Definition 16.7. A program segment “if condition then S1 else S2” is treated by the inference
rule

(p ∧ condition){S1}q
(p ∧ ¬condition){S2}q

p{if condition then S1 elseS2}q
Example 16.8. Show that “if x < 0 then abs := −x else abs := x” is correct with respect
to the initial assertion T and the final assertion abs = |x|. Termination is obvious. For the
partial correctness check the premises of the rule 16.7. (T ∧ x < 0){abs := −x}abs = |x|
and (T ∧ x ≥ 0){abs := x}abs = |x| both hold, therefore, by 16.7, the corresponding Hoare
implication T{if x < 0 then abs := −x else abs := x}(abs = |x|) is true.

Definition 16.9. Partial correctness of a loop segment “while condition S” is proven by
induction on the counter i. The induction proposition p(i) is called a loop invariant. The
rule of inference is

(p ∧ condition){S}p
p{while condition S}(¬condition ∧ p)

Example 16.10. The factorial example from Section 3.5.

Homework assignments. (due Friday 03/02).

16A:Rosen3.5-2; 16B:Rosen3.5-4; 16C:Rosen3.5-12.

