
CS280, Spring 2001 Handout 15
February 23, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 3.4

2. The main message of this lecture:

A recursively defined function f admits iterative (straight)
computation f(0), f(1), . . . , f(n) as well as recursive (back-
ward) when the algorithm computing f(n) invokes f(n−1)
which invokes f(n − 2), etc. Efficiency of those methods
can be very different.

Consider an example of a function power defined recursively:
1. power(0) = 1
2. power(n + 1) = 2 · power(n)

We can use either of two approaches. If we want to find power(12), for example, we can begin
with power(0) = 1 and from here compute power(1) = 2 · power(0) = 2 · 1 = 2, power(2),
power(3), and so on, until we finally get to power(12). A pseudocode algorithm using this
approach is shown below.

procedure power(n : nonnegative integer)
x := 0 for i = 0 to n

x := x · 2
{x is power(n)}

The second approach to computing power(n) uses the recursive definition of power directly.
Algorithm rpower(n)

1. procedure rpower(n : nonnegative integer)
2. if n = 0 then
3. rpower(n) := 1
4. else
5. rpower(n) := 2 ∗ rpower(n − 1)

To understand how the algorithm rpower(n) works, let us consider how we could compute
rpower(4), for example. We can find the value of rpower(4) if we know the value of rpower(3),
but to compute rpower(3), we must first compute rpower(2), and to do this we must first
compute rpower(1), therefore, we must first compute rpower(0). Aha!-this we can do, by the
basis step. Knowing the value of rpower(0), we can then find the value of rpower(1), then
rpower(2), then rpower(3), and finally rpower(4).

Now suppose we start to execute algorithm rpower(n) with the input value n > 0. lines 2
and 3 are passed over because n > 0. When the algorithm gets to the line 5. it temporarily
suspends activity on computing rpower with an input value n and invokes itself with a smaller
input value. The execution of algorithm rpower with an input value of n− 1, if n− 1 > 0, will
pass over lines 2 and 3 and then invoke algorithm rpower with the input value of n − 2. This
[process will continue , with successive invocations, until the input value is finally 0 and the
output value, 1, can be computed by the basis step,lines 2 and 3. This final invocation of the
algorithm will then give this output value to the second-to-last invocation, and so on. Finally,



the original invocation of rpower can be completed. Note that in some sense writing algorithm
rpower is easier then power: the former itself carrying out the work we had to do in writing the
loop of algorithm power. Algorithm rpower(n) is an example of a recursive algorithm, one
that invokes itself. Many programming languages allow such recursion, and it is very natural
to use a recursive algorithm to compute a sequence that has been defined recursively.

Definition 15.1. An algorithm is called recursive if it works by reducing to its own value on
smaller inputs. Recursive algorithms are usually performed backwards.

Example 15.2. A recursive algorithm for computing gcd(a, b)

procedure gcd(a, b : nonnegative integers with a < b)
if a = 0 then gcd(a, b) := b
else gcd(a, b) := gcd(b mod a, a)

Example 15.3. A recursive algorithm for computing Fibonacci numbers.

procedure rfibonacci(n : nonnegative integer)
if n = 0 then rfibonacci(n) = 0
else if n = 1 then rfibonacci(n) = 1
else rfibonacci(n) := rfibonacci(n − 1) + rfibonacci(n − 2)

Here the recursive process of invoking algorithm with less input values branches which causes
an exponential blow-up of its complexity (= the number of additions performed for computing
rfibonacci(n)): this algorithm requires fn+1−1 additions to find fn. (Note, that fn grows faster
than [(1 +

√
5)/2]n > 1.6n.) Let us prove that by induction on n.

Base: n = 0 (the number of additions is 0 which is equal to f1 − 1). n = 1 (the number of
additions is still 0 which is equal to f2 − 1).

Step: The number of additions ] in rfibonacci(n) equals
1+ ] of additions in rfibonacci(n − 1) + ] of additions in rfibonacci(n − 2) =
= 1 + (fn − 1) + (fn−1 − 1) = fn + fn−1 − 1 = fn+1 − 1.

Surprisingly, the straightforward iterational algorithm for Fibonacci numbers takes only n − 1
additions to find fn. Such a huge difference in favor of the iterational algorithm (linear vs.
exponential) has an easy explanation: the recursive algorithms branches each time it invokes
itself and it computes the same sums fk−1 + fk independently along each of the branches. To
the contrary, the iterational algorithm computes each sum fk−1 + fk only once and then just
uses this sum as many times as necessary.

procedure ifibonacci(n : nonnegative integer)
if n = 0 then y = 0 else
begin x := 0, y := 1

for i := 1 to n − 1
begin z := x + y, x := y, y := z
end

end
{y is the nth Fibonacci}

Claim: for n > 1 this algorithm requires only n − 1 additions to compute fn. Indeed, it takes
n − 1 loops to get to fn, each making only one addition.

Homework assignments. (due Friday 03/02).

15A:Rosen3.4-2; 15B:Rosen3.4-8.


