1. Reading: K. Rosen Discrete Mathematics and Its Applications, 3.1

2. The main message of this lecture:

Finding a proof is a kind of art which can be taught but cannot be completely automated. On the other hand, proof checking is an efficient algorithmic procedure.

Proof is a systematic method of deriving new facts from given assumptions called **axioms**. There are usually two different sorts of axioms:

logical axioms that hold in each proof systems independently of its specifics,

proper axioms reflecting specifics of the underlying mathematical structure.

Examples. Logical axioms: $\neg \neg A \rightarrow A$, $\neg \forall x A(x) \rightarrow \exists x \neg A(x)$, etc. Proper axioms for integers): x + y = y + x, $x(y + z) = x \cdot y + x \cdot z$, etc. Those axioms are true, but not universally true, since not every operation is commutative, not every two operations are distributive, etc.

Hypotheses: assumptions made for a particular theorem (e.g. "Let p, q be relatively prime integers ...). Theorems, Lemmas, Corollaries: conclusions made as the result of a proof. **Rules of Inference:** correct methods of reasoning. We suggest the notation: $H_1, H_2, \ldots, H_n \vdash T$ for the rule that allows us to conclude T given hypotheses H_1, H_2, \ldots, H_n .

In a propositional logic (when no quantifiers are involved) there is test on what method of reasoning is correct: for every correct rule of inference there is a corresponding tautology.

Theorem 12.1. (Deduction Theorem) In a propositional logic a sentence T is provable from hypotheses H_1, H_2, \ldots, H_n if and only if $H_1 \wedge H_2 \wedge \ldots \wedge H_n$) $\rightarrow T$ is a tautology.

The proof of this theorem can be found in any logic textbook. Here is a table of some common rules of inference and the corresponding tautologies. For some of them we give two essentially equivalent formulations: one in the form $(X \wedge Y) \to Z$ and the other in the form $X \to (Y \to Z)$.

Rule of inference	Tautology	Name
$p \vdash p \lor q$	$p\! ightarrow\!(pee q)$	Addition
$p \wedge q \vdash p$	$(p \wedge q) o p$	Simplification
$p,q \vdash p \land q$	$p \! ightarrow \! (q \! ightarrow \! (p \! \wedge \! q))$	Conjunction
$p,p\!\rightarrow\!q\vdash q$	$p\!\rightarrow\!((p\!\rightarrow\!q)\!\rightarrow\!q)$	Modus ponens
	$(p \land (p \rightarrow q)) \rightarrow q$	
$\neg q, p \rightarrow q \vdash \neg p$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \!\rightarrow\! q \vdash \neg q \rightarrow \neg p$	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$	Contraposition
$p \!\rightarrow\! q, q \!\rightarrow\! r \vdash p \!\rightarrow\! r$	$(p \! \rightarrow \! q) \rightarrow ((q \! \rightarrow \! r) \rightarrow (p \! \rightarrow \! r))$	Hypothetical syllogism
	$((p\!\rightarrow\!q)\wedge(q\!\rightarrow\!r))\rightarrow(p\!\rightarrow\!r)$	
$p \! \lor \! q, \neg p \vdash q$	$(p \lor q) \to (\neg p \to q)$	Disjunctive syllogism
	$((p \lor q) \land \neg p) \to q)$	

Definition 12.2. A proof is a finite sequence of sentences each of which is either a logical axiom (tautology) or a hypothesis or follows from the previous ones in this sequence by a correct inference rule.

Example 12.3. A proof from hypotheses. Let p:= You send me email message, q:=I will finish writing a program, r:=I will go to sleep early, s:=I will wake up feeling refreshed. Hypotheses: $p \to q, \neg p \to r, r \to s, \neg s$. The goal: q. The argument (which is not unique, of course):

1. $p \rightarrow q$	Hypothesis
2. $\neg q \rightarrow \neg p$	Contrapositive of 1
3. $\neg p \rightarrow r$	Hypothesis
4. $\neg q \rightarrow r$	Hypothetical syllogism, from 2,3
5. $\neg r \rightarrow s$	Hypothesis
6. $\neg q \rightarrow s$	Hypothetical syllogism, from 4,5
7. $\neg s$	Hypothesis
8. $\neg \neg q$	Modus tollens, from 6,7
9. $\neg \neg q \rightarrow q$	Logical axiom
10. q	Modus ponens, from 8,9.

Fallacy is an incorrect rule of inference. Example: $p \to q, q \vdash p$ (fallacy of affirming the conclusion). This "rule" is represented by a proposition $((p \to q) \land q) \to p$ (or, equivalently, $(p \to q) \to (q \to p)$), which is NOT a tautology: make p true, q false and use the truth tables.

Another common fallacy is a **circular reasoning** (or **begging the question**), when a statement is proved using itself. It is clear that such a "reasoning" does not satisfy the definition of a proof 12.2, since the first occurrence of that statement in a proof sequence is not justified.

Some inference rules involving quantifiers.

Rule of inference	Name
$\forall x P(x) \vdash P(c)$	Universal instantiation
$P(a)$ for arbitrary $a \vdash \forall x P(x)$	Universal generalization
$P(c) \vdash \exists x P(x)$	Existential generalization

A comment concerning the rule of universal generalization. The words "for arbitrary a" mean that we cannot conclude "For all integers n the property A(n) holds" from, say A(3), or even from $A(0), A(1), \ldots, A(100)$. What is needed is a general argument saying "Let n be an arbitrary integer. Then ..., and thus A(n)." In other words, if we derived A(n) without making any specific assumptions concerning n, then we are entitled to conclude $\forall nA(n)$.

Example on universal instantiation: *Twiggy*. Here is a correct reasoning: birds can fly, Twiggy is a bird, then Twiggy can fly. To formalize this reasoning assume $B(x) \sim x$ is a bird, $F(x) \sim x$ can fly, t is Twiggy. Then

 $\begin{array}{ll} 1. \ \forall x(B(x) \rightarrow F(x)) & \mbox{Hypothesis} \\ 2. \ B(t) \rightarrow F(t) & \mbox{by universal instantiation from 1} \\ 3. \ B(t) & \mbox{Hypothesis} \\ 4. \ F(t) & \mbox{By modus ponens from 2,3} \end{array}$

Example on universal generalization: For all integers $n \ 6|(n^3 - n)$. Proof: let n be an arbitrary integer. Then $n^3 - n = n(n^2 - 1) = (n - 1)n(n + 1)$, i.e. $n^3 - n$ is a product of three consecutive integers one of which then is a multiple of 3 and at least one is a multiple of 2. Therefore $3|(n^3 - n)$ and $2|(n^3 - n)$, hence $6|(n^3 - n)$.

Example on existential generalization: There exists an odd integer which is not a prime. Proof. Take c = 9 which is clearly odd, and not prime. Therefore, there exists an integer which is both odd and not prime.

Homework assignments. (due Friday 02/23).

12A:Rosen3.1-2ade; 12B:Rosen3.1-10acd; 12C:Rosen3.1-12; 12D:Rosen3.1-26