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February 16, 2001

1. Reading: K. Rosen Discrete Mathematics and Its Applications, 3.1

2. The main message of this lecture:

Finding a proof is a kind of art which can be taught but
cannot be completely automated. On the other hand,
proof checking is an efficient algorithmic procedure.

Proof is a systematic method of deriving new facts from given assumptions called axioms.
There are usually two different sorts of axioms:

logical axioms that hold in each proof systems independently of its specifics,

proper axioms reflecting specifics of the underlying mathematical structure.
Examples. Logical axioms: =—A — A, -VzA(z) — Jz—A(z), etc. Proper axioms for integers):
r+y=y+ax, z(y+z2)=x-y+x-z etc. Those axioms are true, but not universally true,
since not every operation is commutative, not every two operations are distributive, etc.

Hypotheses: assumptions made for a particular theorem (e.g. ”"Let p, ¢ be relatively prime
.). Theorems, Lemmas, Corollaries: conclusions made as the result of a proof.
H,+

integers ..
Rules of Inference: correct methods of reasoning. We suggest the notation: Hy, Ho, ...,
T for the rule that allows us to conclude T' given hypotheses Hy, Ho, ..., H,.

In a propositional logic (when no quantifiers are involved) there is test on what method of
reasoning is correct: for every correct rule of inference there is a corresponding tautology.

Theorem 12.1.
hypotheses Hi, Ho, ...,

(Deduction Theorem) In a propositional logic a sentence T is provable from
H,, if and only if Hi AN Ha A ... N H,) — T is a tautology.

The proof of this theorem can be found in any logic textbook. Here is a table of some common
rules of inference and the corresponding tautologies. For some of them we give two essentially
equivalent formulations: one in the form (X AY) — Z and the other in the form X — (Y — Z).

Rule of inference Tautology Name
pEpVyg p—(pVq) Addition
pAqkp (pAq) — p Simplification
p,qF pAq p—>(q—>(p/\q)) Conjunction
»P—qkq ((p—>q)—>q) Modus ponens
( ANp—q))—
=q,p—qk —p (=gN(p—q))— ﬁp Modus tollens
p—qbk—q— —p (p—q) — (—g——p) Contraposition
p—q,q—rtEp—r | (p—q) — ((g—r) = (p—r)) | Hypothetical syllogism
(p—=a) A (g—1)) — (p—7)
pVg,~pkq (pVq) — (—p — q) Disjunctive syllogism
((pvg) AN =p) — q)

Definition 12.2. A proof is a finite sequence of sentences each of which is either a logical
axiom (tautology) or a hypothesis or follows from the previous ones in this sequence by a
correct inference rule.



Example 12.3. A proof from hypotheses. Let p:= You send me email message, g:= I will finish
writing a program, r:=1I will go to sleep early, s:=1I will wake up feeling refreshed. Hypotheses:
p—q, p—r,r— 8, s The goal: ¢q. The argument (which is not unique, of course):

1. p—gq Hypothesis

2. =g — —=p Contrapositive of 1

3. p—or Hypothesis

4, =q —>r Hypothetical syllogism, from 2,3
5. r —s Hypothesis

6. ¢ — s Hypothetical syllogism, from 4,5
7. s Hypothesis

8. ——¢q Modus tollens, from 6,7

9. =—q — ¢ Logical axiom

10. q Modus ponens, from 8,9.

Fallacy is an incorrect rule of inference. Example: p — ¢,q F p (fallacy of affirming the
conclusion). This ”rule” is represented by a proposition ((p — ¢q) A ¢) — p (or, equivalently,
(p — q) — (¢ — p)), which is NOT a tautology: make p true, ¢ false and use the truth tables.

Another common fallacy is a circular reasoning (or begging the question), when a state-
ment is proved using itself. It is clear that such a ”reasoning” does not satisfy the definition of
a proof 12.2, since the first occurrence of that statement in a proof sequence is not justified.

Some inference rules involving quantifiers.

Rule of inference Name

VxP(z) F P(c) Universal instantiation
P(a) for arbitrary a - Vo P(x) | Universal generalization
P(c) - 3zP(x) Existential generalization

A comment concerning the rule of universal generalization. The words ”for arbitrary a” mean
that we cannot conclude "For all integers n the property A(n) holds” from, say A(3), or
even from A(0), A(1),...,A(100). What is needed is a general argument saying ”Let n be an
arbitrary integer. Then ..., and thus A(n).” In other words, if we derived A(n) without making
any specific assumptions concerning n, then we are entitled to conclude VYnA(n).

Example on universal instantiation: Twiggy. Here is a correct reasoning: birds can fly,
Twiggy is a bird, then Twiggy can fly. To formalize this reasoning assume B(x) ~ z is a bird,
F(x) ~ x can fly, t is Twiggy. Then

1. Vz(B(z) — F(z)) Hypothesis

2. B(t) — F(t) by universal instantiation from 1
3. B(t) Hypothesis
4. F(t) By modus ponens from 2,3

Example on universal generalization: For all integers n 6|(n® — n). Proof: let n be an
arbitrary integer. Then n® —n =n(n? —1) = (n — 1)n(n + 1), i.e. n® —n is a product of three
consecutive integers one of which then is a multiple of 3 and at least one is a multiple of 2.
Therefore 3|(n® — n) and 2|(n® — n), hence 6|(n® — n).

Example on existential generalization: There exists an odd integer which is not a prime.
Proof. Take ¢ = 9 which is clearly odd, and not prime. Therefore, there exists an integer which
is both odd and not prime.

Homework assignments. (due Friday 02/23).
12A:Rosen3.1-2ade; 12B:Rosen3.1-10acd; 12C:Rosen3.1-12; 12D:Rosen3.1-26



