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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 3.1

2. The main message of this lecture:

Finding a proof is a kind of art which can be taught but
cannot be completely automated. On the other hand,
proof checking is an efficient algorithmic procedure.

Proof is a systematic method of deriving new facts from given assumptions called axioms.
There are usually two different sorts of axioms:

logical axioms that hold in each proof systems independently of its specifics,
proper axioms reflecting specifics of the underlying mathematical structure.

Examples. Logical axioms: ¬¬A → A, ¬∀xA(x) → ∃x¬A(x), etc. Proper axioms for integers):
x + y = y + x, x(y + z) = x · y + x · z, etc. Those axioms are true, but not universally true,
since not every operation is commutative, not every two operations are distributive, etc.

Hypotheses: assumptions made for a particular theorem (e.g. ”Let p, q be relatively prime
integers . . .). Theorems, Lemmas, Corollaries: conclusions made as the result of a proof.
Rules of Inference: correct methods of reasoning. We suggest the notation: H1,H2, . . . ,Hn `
T for the rule that allows us to conclude T given hypotheses H1,H2, . . . ,Hn.

In a propositional logic (when no quantifiers are involved) there is test on what method of
reasoning is correct: for every correct rule of inference there is a corresponding tautology.

Theorem 12.1. (Deduction Theorem) In a propositional logic a sentence T is provable from
hypotheses H1,H2, . . . ,Hn if and only if H1 ∧ H2 ∧ . . . ∧ Hn) → T is a tautology.

The proof of this theorem can be found in any logic textbook. Here is a table of some common
rules of inference and the corresponding tautologies. For some of them we give two essentially
equivalent formulations: one in the form (X∧Y ) → Z and the other in the form X → (Y → Z).

Rule of inference Tautology Name
p ` p ∨ q p→(p ∨ q) Addition
p ∧ q ` p (p∧q) → p Simplification
p, q ` p∧q p→(q→(p∧q)) Conjunction
p, p→q ` q p→((p→q)→q) Modus ponens

(p∧(p→q))→q
¬q, p→q ` ¬p (¬q∧(p→q))→¬p Modus tollens
p→q ` ¬q → ¬p (p→q) → (¬q→¬p) Contraposition
p→q, q→r ` p→r (p→q) → ((q→r) → (p→r)) Hypothetical syllogism

((p→q) ∧ (q→r)) → (p→r)
p∨q,¬p ` q (p∨q) → (¬p → q) Disjunctive syllogism

((p∨q) ∧ ¬p) → q)

Definition 12.2. A proof is a finite sequence of sentences each of which is either a logical
axiom (tautology) or a hypothesis or follows from the previous ones in this sequence by a
correct inference rule.



Example 12.3. A proof from hypotheses. Let p:= You send me email message, q:= I will finish
writing a program, r:=I will go to sleep early, s:=I will wake up feeling refreshed. Hypotheses:
p → q, ¬p → r, r → s, ¬s. The goal: q. The argument (which is not unique, of course):

1. p → q Hypothesis
2. ¬q → ¬p Contrapositive of 1
3. ¬p → r Hypothesis
4. ¬q → r Hypothetical syllogism, from 2,3
5. ¬r → s Hypothesis
6. ¬q → s Hypothetical syllogism, from 4,5
7. ¬s Hypothesis
8. ¬¬q Modus tollens, from 6,7
9. ¬¬q → q Logical axiom
10. q Modus ponens, from 8,9.

Fallacy is an incorrect rule of inference. Example: p → q, q ` p (fallacy of affirming the
conclusion). This ”rule” is represented by a proposition ((p → q) ∧ q) → p (or, equivalently,
(p → q) → (q → p)), which is NOT a tautology: make p true, q false and use the truth tables.

Another common fallacy is a circular reasoning (or begging the question), when a state-
ment is proved using itself. It is clear that such a ”reasoning” does not satisfy the definition of
a proof 12.2, since the first occurrence of that statement in a proof sequence is not justified.

Some inference rules involving quantifiers.

Rule of inference Name
∀xP (x) ` P (c) Universal instantiation
P (a) for arbitrary a ` ∀xP (x) Universal generalization
P (c) ` ∃xP (x) Existential generalization

A comment concerning the rule of universal generalization. The words ”for arbitrary a” mean
that we cannot conclude ”For all integers n the property A(n) holds” from, say A(3), or
even from A(0), A(1), . . . , A(100). What is needed is a general argument saying ”Let n be an
arbitrary integer. Then . . ., and thus A(n).” In other words, if we derived A(n) without making
any specific assumptions concerning n, then we are entitled to conclude ∀nA(n).

Example on universal instantiation: Twiggy. Here is a correct reasoning: birds can fly,
Twiggy is a bird, then Twiggy can fly. To formalize this reasoning assume B(x) ∼ x is a bird,
F (x) ∼ x can fly, t is Twiggy. Then

1. ∀x(B(x) → F (x)) Hypothesis
2. B(t) → F (t) by universal instantiation from 1
3. B(t) Hypothesis
4. F (t) By modus ponens from 2,3

Example on universal generalization: For all integers n 6|(n3 − n). Proof: let n be an
arbitrary integer. Then n3 − n = n(n2 − 1) = (n− 1)n(n + 1), i.e. n3 − n is a product of three
consecutive integers one of which then is a multiple of 3 and at least one is a multiple of 2.
Therefore 3|(n3 − n) and 2|(n3 − n), hence 6|(n3 − n).

Example on existential generalization: There exists an odd integer which is not a prime.
Proof. Take c = 9 which is clearly odd, and not prime. Therefore, there exists an integer which
is both odd and not prime.

Homework assignments. (due Friday 02/23).
12A:Rosen3.1-2ade; 12B:Rosen3.1-10acd; 12C:Rosen3.1-12; 12D:Rosen3.1-26


