1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.6
2. The main message of this lecture:

Matrices is a natural generalization of numbers. They have the same operations (addition/subtraction, multiplication/division), though with some peculiar properties: multiplication is not commutative, division is not always possible even when the denominator is not zero. Important: memorize how to multiply matrices!

Numbers here are not necessarily integers.
Definition 11.1. Matrix is a rectangular array of $m \times n$ entries. Here m is the number of rows, n - the number of columns. Notations:

$$
\left.A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)=\left[a_{i j}\right] \text { (} i \text { is the row index, } j \text { is the column index }\right)
$$

Examples:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad(2 \times 3 \text { matrix }),\left(\begin{array}{cc}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) \quad(3 \times 2 \text { matrix }),\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \quad(4 \times 1 \text { matrix })
$$

Definition 11.2. Zero matrixes: for any given size $(m \times n) \mathbf{0}$ is the matrix where all entries are equal to 0 . Addition of matrices of the same size: add the corresponding entries $A+B=\left[a_{i j}+b_{i j}\right]$. It is clear that $A+\mathbf{0}=\mathbf{0}+A=A$. Examples: $(1234)+(5678)=(681012)$,

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{lll}
11 & 12 & 13 \\
14 & 15 & 16
\end{array}\right)=\left(\begin{array}{ccc}
12 & 14 & 16 \\
18 & 20 & 22
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)+\left(\begin{array}{c}
-4 \\
-3 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-1 \\
1 \\
3
\end{array}\right)
$$

Definition 11.3. Multiplication of matrices $A(m \times n)$ and $B(n \times k)$. The product of A, B is $A \cdot B=C(m \times k)$, where C is obtained by the row-column rule: to get $c_{i j}$ multiply the corresponding entries from i th row of A and from j the column of B, and take the sum of the products.

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots+a_{i n} b_{n j}=\sum_{l=1}^{n} a_{i l} b_{l j}
$$

Examples:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \cdot\left(\begin{array}{l}
-4 \\
-3 \\
-2 \\
-1
\end{array}\right)=1 \cdot(-4)+2 \cdot(-3)+3 \cdot(-2)+4 \cdot(-1)=-20
$$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
-6 & 5 \\
-4 & 3 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 \cdot(-6)+2 \cdot(-4)+3 \cdot(-2) & 1 \cdot 5+2 \cdot 3+3 \cdot 1 \\
4 \cdot(-6)+5 \cdot(-4)+6 \cdot(-2) & 4 \cdot 5+5 \cdot 3+6 \cdot 1 \\
0 \cdot(-6)+1 \cdot(-4)+0 \cdot(-2) & 0 \cdot 5+1 \cdot 3+0 \cdot 1
\end{array}\right)=\left(\begin{array}{cc}
-20 & 14 \\
-56 & 41 \\
-4 & 3
\end{array}\right)
$$

Matrix multiplication of $A(m \times n)$ and $B(n \times m)$ is not commutative, i.e., generally speaking, $A \cdot B \neq B \cdot A$. Indeed, even the sizes of $A \cdot B(m \times m)$ and $B \cdot A(n \times n)$ do not match. The same holds true even for square A, B. Example:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \text { but }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

The former of those two examples show that $A \cdot B=\mathbf{0}$ does not yield that $A=\mathbf{0} \vee B=\mathbf{0}$.
There is no cancellation rule of matrix multiplication: $A \cdot B=A \cdot C$ and $A \neq \mathbf{0}$ does not necessarily yield $B=C$. Example:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \text { but }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Complexity of the multiplication of $(m \times n)$ by $(n \times k)$ matrices $=$ the number of individual additions or multiplication. In the standard algorithm for each entry $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+$ $+\ldots+a_{i n} b_{n j}$ there are n multiplications and $n-1$ additions. Total: mnk multiplications and $m(n-1) k$ additions, is $O\left(n^{3}\right)$ for $(n \times n)$ matrices. There are much faster matrix multiplication algorithms than the standard one given by the definition above.

Example: Assume that we need to multiply three matrices $A(10 \times 10), B(10 \times 100)$ and C (100×1). Since the matrix multiplication is associative, $A \cdot(B \cdot C)=(A \cdot B) \cdot C$, and the final result does not really depend on what multiplication is performed first. However, the complexity does! If we perform $A \cdot B$ first, we first spend $10 \cdot 10 \cdot 100$ number multiplications, and then $10 \cdot 100 \cdot 1$ number multiplications, which brings the total to $10000+1000=11000$. If $B \cdot C$ is taken first, then the total number of multiplications is $10 \cdot 100 \cdot 1+10 \cdot 10 \cdot 1=1100$ which is $1 / 10$ of the previous estimate.

Definition 11.4. Transpose of $\left[a_{i j}\right]^{T}=\left[a_{j i}\right]$. Example: $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$. A is symmetric if $A^{T}=A$ (note that such an A should be $(n \times n)$).
Definition 11.5. Identity matrix $I_{n}=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ . & . & \cdots & \cdot \\ 0 & 0 & \cdots & 1\end{array}\right) \cdot A \cdot I_{n}=I_{n} \cdot A=A$ holds for any
$n \times n$ matrix A. The power of a square matrix A is defined by $A^{0}=I_{n}, A^{k}=\underbrace{A \cdot A \cdot \ldots \cdot A}_{k \text { times }}$.
Definition 11.6 For 0-1 matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ we can define
$A \wedge B=\left[a_{i j} \wedge b_{i j}\right]$ (meet), $\quad A \vee B=\left[a_{i j} \vee b_{i j}\right]$ (join),
$A \odot B=\left[\left(a_{i 1} \wedge b_{1 j}\right) \vee \ldots \vee\left(a_{i n} \wedge b_{n j}\right)\right]$ (boolean product), $A^{[0]}=I_{n}, A^{[r+1]}=A^{[r]} \odot A$ (boolean power).

Homework assignments. (due Friday 02/23).
11A:Rosen2.6-2b; 11B:Rosen2.6-4c; 11C:Rosen2.6-24a; 11D:Rosen2.6-28

