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1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.5

2. The main message of this lecture:

Primes are atoms of arithmetic with many striking prop-
erties. Prime factorization is very hard in practice: we
can use this observation to encode messages and feel safe
when an encryption key becomes public.

Some useful math first. As before, all the numbers here are integers.

Theorem 10.1. For all a, b > 0 there exist x, y such that ax + by = gcd(a, b).
Proof. By example, which is here as good as a general case. Consider a = 111, b = 45. Run
the Euclidean algorithm:

111 = 2 · 45 + 21 ⇒ 21 = 111 − 2 · 45
45 = 2 · 21 + 3 ⇒ 3 = 45 − 2 · 21
21 = 7 · 3 ⇒ gcd(111, 45) = 3.

Now walk these computations backward: 3 = 45−2·21 = 45−2·(111−2·45) = 45−2·111+4·45 =
5·45−2·111. One can see easily, that gcd(a, b) is a linear combination of each pair of remainders
appearing in the process of execution of the algorithm.

Corollary 10.2. If a,b are relatively prime, then there are x,y, such that ax + by = 1.
Example: gcd(101, 45) = 1. Find x, y such that 101 · x + 45 · y = 1. Use the general method
from 10.1. By the Euclidean Algorithm, 101 = 2 · 45 + 11, 45 = 4 · 11 + 1. Walking backwards:
1 = 45 − 4 · 11 = 45 − 4(101 − 2 · 45) = 45 − 4 · 101 + 8 · 45 = 45 · 9 − 101 · 4, x = −4, y = 9.

An equation ax ≡ b (mod m) is called linear congruence. Example: 3x ≡ 2 (mod 5), solution
x =?. Let us try some x’s: 3·0 ≡ 0 (mod 5), 3·1 ≡ 3 (mod 5), 3·2 ≡ 1 (mod 5), 3·3 ≡ 4 (mod 5),
3 · 4 ≡ 2 (mod 5). Thus x = 4 is a solution, as well as any number 4 + 5k. Such a method is
practical for small m’s: try the numbers from 0 to m − 1. Sometimes we are not lucky:
2x ≡ 1 (mod 4) has no solutions, since 2x is always even, i.e. is 0 or 2 (mod 4).

Theorem 10.3. If gcd(a,m) = 1 then ax ≡ 1 (mod m) has a solution.
Proof. By 10.2, find x, y such that ax + my = 1. Then x is a solution: ax ≡ ax + my ≡
≡ 1 (mod m). Example: to solve 45x ≡ 1 (mod 101) use the above example 1 = 45 ·9−101 ·4 ≡
≡ 45 · 9 (mod 101), x = 9.

Theorem 10.4. If gcd(a, b) = 1 and a|z and b|z then ab|z.
Proof. From the assumptions: z = ua = vb, therefore, a|vb. Since a, b are relative primes,
a|v. (Here is a formal justification for such an observation: by 10.2, ax + by = 1 for some x, y,
hence vax + vby = v. Notice, that a divides both vax and vby, therefore, a|v.). Furthermore
v = wa, z = vb = wab and ab|z.

The following generalization of 10.4 naturally holds: if m1,m2, . . . ,mn be pairwise relatively
prime and mi|z for all i = 1, 2, . . . , n, then m1 · m2 · . . . · mn|z.

Systems of linear congruences (consider a special case only): find x such that

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 1 (mod 7)



Theorem 10.5. (The Chinese Remainder Theorem)
Let m1,m2, . . . ,mn be pairwise relatively prime. Then the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
......................
x ≡ an (mod mn)

has a unique solution modulo m = m1 · m2 · . . . · mn.
Proof. For each k = 1, 2 . . . , n consider Mk = m/mk = m1 · . . . · mk−1 · mk+1 · . . . · mn. Note
that gcd(Mk,mk) = 1, o.w. some d > 1 divides both mk and Mk, therefore d divides one of
mi for i 6= k, and mi,mk are not relatively prime. By 10.3, ∃yk Mkyk ≡ 1 (mod mk). Then
x := a1M1y1 + . . . + anMnyn is a desired solution. Indeed, mi|Mj for all i 6= j, therefore
x ≡ aiMiyi ≡ ai · 1 ≡ ai (mod mi) for all i = 1, 2, . . . , n. Let us show the uniqueness. Suppose
there is another nonnegative y < m such that y ≡ ai (mod mi), i = 1, 2, . . . , n. Without loss of
generality assume that x ≥ y and take the difference z = x−y. ¿From the assumptions it follows
that 0 ≤ z < m and z ≡ 0 (mod mi), i = 1, 2, . . . , n. Therefore, mi|z for all i = 1, 2, . . . , n. By
10.4 (the general form), m = m1 · m2 · mn|z, therefore, z = 0, i.e. x = y.

Example 10.6. To solve the system of congruences preceding 10.5, apply the general method
from the proof of 10.5: m = 3 · 5 · 7 = 105, M1 = 5 · 7 = 35, M2 = 3 · 7 = 21, M3 = 3 · 5 = 15,
35 ·2 ≡ 1 (mod 3), 21 ·1 ≡ 1 (mod 5), 15 ·1 ≡ 1 (mod 7), x = 2 ·35 ·2+3 ·21 ·1+2 ·15 ·1 = 233 ≡
≡ 23 (mod 105).

Example 10.7. Handling large numbers by their remainders with respect to several smaller
relative primes. m1 = 99, m1 = 98, m1 = 97, m1 = 95, m = m1·m2·m3·m4 = 89403930. Every
k < m can be uniquely represented by a 4-tuple of numbers < 100 that are the remainders of
k with respect to m1,m2,m3,m4. 123684 = (33, 8, 9, 89), 413456 = (32, 92, 42, 16). Therefore,
123684 + 413456 = (65, 2, 51, 10). To convert this 4-tuple back to the integer, one has to solve
the system of congruences: x ≡ 65 (mod 99), x ≡ 2 (mod 98), x ≡ 51 (mod 97), and
x ≡ 10 (mod 99).

Theorem 10.8. (Fermat’s Little Theorem)
If p is a prime which does not divide a then ap−1 ≡ 1 (mod p). Furthermore, ap ≡ a (mod p).
Proof. Consider Z+

p = {1, 2, 3, . . . , p − 1} the set of all positive remainders modulo p, and let
aZ+

p = {a · 1, a · 2, a · 3, . . . , a · (p − 1)}. All elements in the latter set are distinct (mod p).
Indeed, let ax ≡ ay (mod p) and x ≥ y, thus 0 ≤ (x − y) < p. Then a(x − y) ≡ 0 (mod p) ⇒
p|a(x − y) ⇒ p|a or p|(x − y). The former is impossible by the assumptions of the theorem.
Therefore, p|(x − y) and thus x − y = 0, i.e. x = y. We have established, that Z+

p and aZ+
p is

the same set modulo p, therefore, the products of their elements coincide mod p:
1 · 2 · . . . · (p − 1) ≡ (a · 1) · (a · 2) · . . . · (a · (p − 1)) (mod p)
(p−1)! ≡ ap−1(p−1)! (mod p), (p−1)!(ap−1−1) ≡ 0 (mod p), thus p|(p−1)! or p|(ap−1−1).

The former is impossible since a prime p cannot divide any positive number < (p−1). Therefore
p|(ap−1 − 1) and ap−1 ≡ 1 (mod p).

Example 10.9. Evaluate 2340 (mod 11). By Fermat’s Little Theorem, 210 ≡ 1 (mod 11).
Therefore 2340 = (210)34 ≡ 134 ≡ 1 (mod 11).

RSA encryption. See the slides and/or the textbook.

Homework assignments. (due Friday 02/16).
10A:Rosen2.5-2f; 10B:Rosen2.5-24ab; 10C:Rosen2.5-26di


