1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.5
2. The main message of this lecture:

Primes are atoms of arithmetic with many striking properties. Prime factorization is very hard in practice: we can use this observation to encode messages and feel safe when an encryption key becomes public.

Some useful math first. As before, all the numbers here are integers.
Theorem 10.1. For all $a, b>0$ there exist x, y such that $a x+b y=\operatorname{gcd}(a, b)$.
Proof. By example, which is here as good as a general case. Consider $a=111, b=45$. Run the Euclidean algorithm:

$$
\begin{array}{lll}
111=2 \cdot 45+21 & \Rightarrow & 21=111-2 \cdot 45 \\
45=2 \cdot 21+3 & \Rightarrow \quad 3=45-2 \cdot 21 \\
21=7 \cdot 3 \quad \Rightarrow & g c d(111,45)=3 .
\end{array}
$$

Now walk these computations backward: $3=45-2 \cdot 21=45-2 \cdot(111-2 \cdot 45)=45-2 \cdot 111+4 \cdot 45=$ $5 \cdot 45-2 \cdot 111$. One can see easily, that $g c d(a, b)$ is a linear combination of each pair of remainders appearing in the process of execution of the algorithm.

Corollary 10.2. If a, b are relatively prime, then there are x, y, such that $a x+b y=1$.
Example: $\operatorname{gcd}(101,45)=1$. Find x, y such that $101 \cdot x+45 \cdot y=1$. Use the general method from 10.1. By the Euclidean Algorithm, $101=2 \cdot 45+11,45=4 \cdot 11+1$. Walking backwards: $1=45-4 \cdot 11=45-4(101-2 \cdot 45)=45-4 \cdot 101+8 \cdot 45=45 \cdot 9-101 \cdot 4, x=-4, y=9$.

An equation $a x \equiv b(\bmod m)$ is called linear congruence. Example: $3 x \equiv 2(\bmod 5)$, solution $x=$?. Let us try some x 's: $3 \cdot 0 \equiv 0(\bmod 5), 3 \cdot 1 \equiv 3(\bmod 5), 3 \cdot 2 \equiv 1(\bmod 5), 3 \cdot 3 \equiv 4(\bmod 5)$, $3 \cdot 4 \equiv 2(\bmod 5)$. Thus $x=4$ is a solution, as well as any number $4+5 k$. Such a method is practical for small m 's: try the numbers from 0 to $m-1$. Sometimes we are not lucky: $2 x \equiv 1(\bmod 4)$ has no solutions, since $2 x$ is always even, i.e. is 0 or $2(\bmod 4)$.
Theorem 10.3. If $\operatorname{gcd}(a, m)=1$ then $a x \equiv 1(\bmod m)$ has a solution.
Proof. By 10.2, find x, y such that $a x+m y=1$. Then x is a solution: $a x \equiv a x+m y \equiv$ $\equiv 1(\bmod m)$. Example: to solve $45 x \equiv 1(\bmod 101)$ use the above example $1=45 \cdot 9-101 \cdot 4 \equiv$ $\equiv 45 \cdot 9(\bmod 101), x=9$.

Theorem 10.4. If $\operatorname{gcd}(a, b)=1$ and $a \mid z$ and $b \mid z$ then $a b \mid z$.
Proof. From the assumptions: $z=u a=v b$, therefore, $a \mid v b$. Since a, b are relative primes, $a \mid v$. (Here is a formal justification for such an observation: by $10.2, a x+b y=1$ for some x, y, hence $v a x+v b y=v$. Notice, that a divides both $v a x$ and $v b y$, therefore, $a \mid v$.). Furthermore $v=w a, z=v b=w a b$ and $a b \mid z$.
The following generalization of 10.4 naturally holds: if $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime and $m_{i} \mid z$ for all $i=1,2, \ldots, n$, then $m_{1} \cdot m_{2} \cdot \ldots \cdot m_{n} \mid z$.
Systems of linear congruences (consider a special case only): find x such that

$$
x \equiv 2(\bmod 3), \quad x \equiv 3(\bmod 5), \quad x \equiv 1(\bmod 7)
$$

Theorem 10.5. (The Chinese Remainder Theorem)
Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime. Then the system
$x \equiv a_{1}\left(\bmod m_{1}\right)$
$x \equiv a_{2}\left(\bmod m_{2}\right)$
$x \equiv a_{n}\left(\bmod m_{n}\right)$
has a unique solution modulo $m=m_{1} \cdot m_{2} \cdot \ldots \cdot m_{n}$.
Proof. For each $k=1,2 \ldots, n$ consider $M_{k}=m / m_{k}=m_{1} \cdot \ldots \cdot m_{k-1} \cdot m_{k+1} \cdot \ldots \cdot m_{n}$. Note that $\operatorname{gcd}\left(M_{k}, m_{k}\right)=1$, o.w. some $d>1$ divides both m_{k} and M_{k}, therefore d divides one of m_{i} for $i \neq k$, and m_{i}, m_{k} are not relatively prime. By $10.3, \exists y_{k} M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$. Then $x:=a_{1} M_{1} y_{1}+\ldots+a_{n} M_{n} y_{n}$ is a desired solution. Indeed, $m_{i} \mid M_{j}$ for all $i \neq j$, therefore $x \equiv a_{i} M_{i} y_{i} \equiv a_{i} \cdot 1 \equiv a_{i}\left(\bmod m_{i}\right)$ for all $i=1,2, \ldots, n$. Let us show the uniqueness. Suppose there is another nonnegative $y<m$ such that $y \equiv a_{i}\left(\bmod m_{i}\right), i=1,2, \ldots, n$. Without loss of generality assume that $x \geq y$ and take the difference $z=x-y$. ¿From the assumptions it follows that $0 \leq z<m$ and $z \equiv 0\left(\bmod m_{i}\right), i=1,2, \ldots, n$. Therefore, $m_{i} \mid z$ for all $i=1,2, \ldots, n$. By 10.4 (the general form), $m=m_{1} \cdot m_{2} \cdot m_{n} \mid z$, therefore, $z=0$, i.e. $x=y$.

Example 10.6. To solve the system of congruences preceding 10.5, apply the general method from the proof of $10.5: m=3 \cdot 5 \cdot 7=105, M_{1}=5 \cdot 7=35, M_{2}=3 \cdot 7=21, M_{3}=3 \cdot 5=15$, $35 \cdot 2 \equiv 1(\bmod 3), 21 \cdot 1 \equiv 1(\bmod 5), 15 \cdot 1 \equiv 1(\bmod 7), x=2 \cdot 35 \cdot 2+3 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1=233 \equiv$ $\equiv 23(\bmod 105)$.

Example 10.7. Handling large numbers by their remainders with respect to several smaller relative primes. $m_{1}=99, m_{1}=98, m_{1}=97, m_{1}=95, m=m_{1} \cdot m_{2} \cdot m_{3} \cdot m_{4}=89403930$. Every $k<m$ can be uniquely represented by a 4 -tuple of numbers <100 that are the remainders of k with respect to $m_{1}, m_{2}, m_{3}, m_{4} .123684=(33,8,9,89), 413456=(32,92,42,16)$. Therefore, $123684+413456=(65,2,51,10)$. To convert this 4 -tuple back to the integer, one has to solve the system of congruences: $x \equiv 65(\bmod 99), x \equiv 2(\bmod 98), x \equiv 51(\bmod 97)$, and $x \equiv 10(\bmod 99)$.

Theorem 10.8. (Fermat's Little Theorem)
If p is a prime which does not divide a then $a^{p-1} \equiv 1(\bmod p)$. Furthermore, $a^{p} \equiv a(\bmod p)$.
Proof. Consider $\mathbf{Z}_{p}^{+}=\{1,2,3, \ldots, p-1\}$ the set of all positive remainders modulo p, and let $a \mathbf{Z}_{p}^{+}=\{a \cdot 1, a \cdot 2, a \cdot 3, \ldots, a \cdot(p-1)\}$. All elements in the latter set are distinct $(\bmod p)$. Indeed, let $a x \equiv a y(\bmod p)$ and $x \geq y$, thus $0 \leq(x-y)<p$. Then $a(x-y) \equiv 0(\bmod p) \Rightarrow$ $p|a(x-y) \Rightarrow p| a$ or $p \mid(x-y)$. The former is impossible by the assumptions of the theorem. Therefore, $p \mid(x-y)$ and thus $x-y=0$, i.e. $x=y$. We have established, that \mathbf{Z}_{p}^{+}and $a \mathbf{Z}_{p}^{+}$is the same set modulo p, therefore, the products of their elements coincide $\bmod p$:

$$
\begin{aligned}
& 1 \cdot 2 \cdot \ldots \cdot(p-1) \equiv(a \cdot 1) \cdot(a \cdot 2) \cdot \ldots \cdot(a \cdot(p-1))(\bmod p) \\
& (p-1)!\equiv a^{p-1}(p-1)!(\bmod p),(p-1)!\left(a^{p-1}-1\right) \equiv 0(\bmod p), \text { thus } p \mid(p-1)!\text { or } p \mid\left(a^{p-1}-1\right) .
\end{aligned}
$$

The former is impossible since a prime p cannot divide any positive number $<(p-1)$. Therefore $p \mid\left(a^{p-1}-1\right)$ and $a^{p-1} \equiv 1(\bmod p)$.
Example 10.9. Evaluate $2^{340}(\bmod 11)$. By Fermat's Little Theorem, $2^{10} \equiv 1(\bmod 11)$. Therefore $2^{340}=\left(2^{1} 0\right)^{34} \equiv 1^{34} \equiv 1(\bmod 11)$.
RSA encryption. See the slides and/or the textbook.
Homework assignments. (due Friday 02/16).
10A:Rosen2.5-2f; 10B:Rosen2.5-24ab; 10C:Rosen2.5-26di

