- 1. Reading: K. Rosen Discrete Mathematics and Its Applications, 2.5
- 2. The main message of this lecture:

Primes are atoms of arithmetic with many striking properties. Prime factorization is very hard in practice: we can use this observation to encode messages and feel safe when an encryption key becomes public.

Some useful math first. As before, all the numbers here are integers.

Theorem 10.1. For all a, b > 0 there exist x, y such that ax + by = gcd(a, b). **Proof.** By example, which is here as good as a general case. Consider a = 111, b = 45. Run the Euclidean algorithm:

 $\begin{array}{rll} 111=2\cdot 45+21 & \Rightarrow & 21=111-2\cdot 45\\ 45=2\cdot 21+3 & \Rightarrow & 3=45-2\cdot 21\\ 21=7\cdot 3 & \Rightarrow & gcd(111,45)=3. \end{array}$

Now walk these computations backward: $3 = 45 - 2 \cdot 21 = 45 - 2 \cdot (111 - 2 \cdot 45) = 45 - 2 \cdot 111 + 4 \cdot 45 = 5 \cdot 45 - 2 \cdot 111$. One can see easily, that gcd(a, b) is a linear combination of each pair of remainders appearing in the process of execution of the algorithm.

Corollary 10.2. If a,b are relatively prime, then there are x,y, such that ax + by = 1. Example: gcd(101, 45) = 1. Find x, y such that $101 \cdot x + 45 \cdot y = 1$. Use the general method from 10.1. By the Euclidean Algorithm, $101 = 2 \cdot 45 + 11$, $45 = 4 \cdot 11 + 1$. Walking backwards: $1 = 45 - 4 \cdot 11 = 45 - 4(101 - 2 \cdot 45) = 45 - 4 \cdot 101 + 8 \cdot 45 = 45 \cdot 9 - 101 \cdot 4$, x = -4, y = 9.

An equation $ax \equiv b \pmod{m}$ is called **linear congruence**. Example: $3x \equiv 2 \pmod{5}$, solution x = ?. Let us try some x's: $3 \cdot 0 \equiv 0 \pmod{5}$, $3 \cdot 1 \equiv 3 \pmod{5}$, $3 \cdot 2 \equiv 1 \pmod{5}$, $3 \cdot 3 \equiv 4 \pmod{5}$, $3 \cdot 4 \equiv 2 \pmod{5}$. Thus x = 4 is a solution, as well as any number 4 + 5k. Such a method is practical for small m's: try the numbers from 0 to m - 1. Sometimes we are not lucky: $2x \equiv 1 \pmod{4}$ has no solutions, since 2x is always even, i.e. is 0 or 2 (mod 4).

Theorem 10.3. If gcd(a,m) = 1 then $ax \equiv 1 \pmod{m}$ has a solution. **Proof.** By 10.2, find x, y such that ax + my = 1. Then x is a solution: $ax \equiv ax + my \equiv 1 \pmod{m}$. Example: to solve $45x \equiv 1 \pmod{101}$ use the above example $1 = 45 \cdot 9 - 101 \cdot 4 \equiv 45 \cdot 9 \pmod{101}$, x = 9.

Theorem 10.4. If gcd(a, b) = 1 and a|z and b|z then ab|z.

Proof. From the assumptions: z = ua = vb, therefore, a|vb. Since a, b are relative primes, a|v. (Here is a formal justification for such an observation: by 10.2, ax + by = 1 for some x, y, hence vax + vby = v. Notice, that a divides both vax and vby, therefore, a|v.). Furthermore v = wa, z = vb = wab and ab|z.

The following generalization of 10.4 naturally holds: if m_1, m_2, \ldots, m_n be pairwise relatively prime and $m_i | z$ for all $i = 1, 2, \ldots, n$, then $m_1 \cdot m_2 \cdot \ldots \cdot m_n | z$.

Systems of linear congruences (consider a special case only): find x such that

 $x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}, \quad x \equiv 1 \pmod{7}$

Theorem 10.5. (The Chinese Remainder Theorem)

Let m_1, m_2, \ldots, m_n be pairwise relatively prime. Then the system

 $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$ \dots $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m = m_1 \cdot m_2 \cdot \ldots \cdot m_n$.

Proof. For each k = 1, 2..., n consider $M_k = m/m_k = m_1 \cdot \ldots \cdot m_{k-1} \cdot m_{k+1} \cdot \ldots \cdot m_n$. Note that $gcd(M_k, m_k) = 1$, o.w. some d > 1 divides both m_k and M_k , therefore d divides one of m_i for $i \neq k$, and m_i, m_k are not relatively prime. By 10.3, $\exists y_k \ M_k y_k \equiv 1 \pmod{m_k}$. Then $x := a_1 M_1 y_1 + \ldots + a_n M_n y_n$ is a desired solution. Indeed, $m_i | M_j$ for all $i \neq j$, therefore $x \equiv a_i M_i y_i \equiv a_i \cdot 1 \equiv a_i \pmod{m_i}$ for all $i = 1, 2, \ldots, n$. Let us show the uniqueness. Suppose there is another nonnegative y < m such that $y \equiv a_i \pmod{m_i}$, $i = 1, 2, \ldots, n$. Without loss of generality assume that $x \geq y$ and take the difference z = x-y. From the assumptions it follows that $0 \leq z < m$ and $z \equiv 0 \pmod{m_i}$, $i = 1, 2, \ldots, n$. Therefore, $m_i | z$ for all $i = 1, 2, \ldots, n$. By 10.4 (the general form), $m = m_1 \cdot m_2 \cdot m_n | z$, therefore, z = 0, i.e. x = y.

Example 10.6. To solve the system of congruences preceding 10.5, apply the general method from the proof of 10.5: $m = 3 \cdot 5 \cdot 7 = 105$, $M_1 = 5 \cdot 7 = 35$, $M_2 = 3 \cdot 7 = 21$, $M_3 = 3 \cdot 5 = 15$, $35 \cdot 2 \equiv 1 \pmod{3}$, $21 \cdot 1 \equiv 1 \pmod{5}$, $15 \cdot 1 \equiv 1 \pmod{7}$, $x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233 \equiv 23 \pmod{105}$.

Example 10.7. Handling large numbers by their remainders with respect to several smaller relative primes. $m_1 = 99$, $m_1 = 98$, $m_1 = 97$, $m_1 = 95$, $m = m_1 \cdot m_2 \cdot m_3 \cdot m_4 = 89403930$. Every k < m can be uniquely represented by a 4-tuple of numbers < 100 that are the remainders of k with respect to m_1, m_2, m_3, m_4 . 123684 = (33, 8, 9, 89), 413456 = (32, 92, 42, 16). Therefore, 123684 + 413456 = (65, 2, 51, 10). To convert this 4-tuple back to the integer, one has to solve the system of congruences: $x \equiv 65 \pmod{99}$, $x \equiv 2 \pmod{98}$, $x \equiv 51 \pmod{97}$, and $x \equiv 10 \pmod{99}$.

Theorem 10.8. (Fermat's Little Theorem)

If p is a prime which does not divide a then $a^{p-1} \equiv 1 \pmod{p}$. Furthermore, $a^p \equiv a \pmod{p}$. **Proof.** Consider $\mathbf{Z}_p^+ = \{1, 2, 3, \dots, p-1\}$ the set of all positive remainders modulo p, and let $a\mathbf{Z}_p^+ = \{a \cdot 1, a \cdot 2, a \cdot 3, \dots, a \cdot (p-1)\}$. All elements in the latter set are distinct \pmod{p} . Indeed, let $ax \equiv ay \pmod{p}$ and $x \ge y$, thus $0 \le (x-y) < p$. Then $a(x-y) \equiv 0 \pmod{p} \Rightarrow p|a(x-y) \Rightarrow p|a \text{ or } p|(x-y)$. The former is impossible by the assumptions of the theorem. Therefore, p|(x-y) and thus x - y = 0, i.e. x = y. We have established, that \mathbf{Z}_p^+ and $a\mathbf{Z}_p^+$ is the same set modulo p, therefore, the products of their elements coincide mod p:

 $1 \cdot 2 \cdot \ldots \cdot (p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \ldots \cdot (a \cdot (p-1)) \pmod{p}$

 $(p-1)! \equiv a^{p-1}(p-1)! \pmod{p}, \ (p-1)!(a^{p-1}-1) \equiv 0 \pmod{p}, \text{ thus } p|(p-1)! \text{ or } p|(a^{p-1}-1).$ The former is impossible since a prime p cannot divide any positive number < (p-1). Therefore $p|(a^{p-1}-1)$ and $a^{p-1} \equiv 1 \pmod{p}$.

Example 10.9. Evaluate $2^{340} \pmod{11}$. By Fermat's Little Theorem, $2^{10} \equiv 1 \pmod{11}$. Therefore $2^{340} = (2^{10})^{34} \equiv 1^{34} \equiv 1 \pmod{11}$.

RSA encryption. See the slides and/or the textbook.

Homework assignments. (due Friday 02/16).

10A:Rosen2.5-2f; 10B:Rosen2.5-24ab; 10C:Rosen2.5-26di