Exercise 1 (10 points) A sequence $X_{n}$ is defined recursively by
$X_{0}=a$
$X_{1}=b$, where $a, b$ are reals
$X_{n}=X_{n-1}+X_{n-2}$, for $n>1$.
Prove by induction, that $X_{n}=b \cdot f_{n}+a \cdot f_{n-1}$ for all $n>0$, where $f_{n}$ is the $n$th Fibonacci number ( $f_{0}=0, f_{1}=1, f_{n}=f_{n-2}+f_{n-1}$ for $n>1$ ).

Solution: We shall prove by induction that $X_{n}=b \cdot f_{n}+a \cdot f_{n-1}$ for all $n>0\left(^{*}\right)$.

First of all, this is true for $n=1$ since $X_{1}=b=b \cdot 1+a \cdot 0=b \cdot f_{1}+a \cdot f_{0}$. This is true for $n=2$ also since $X_{2}=X_{1}+X_{0}=b \cdot 1+a \cdot 1=b \cdot f_{2}+a \cdot f_{1}$.

Given an arbitrary $n>1$, let us assume $\left(^{*}\right)$ is true for $n-1$ and for $n$.

$$
X_{n+1}=X_{n}+X_{n-1}
$$

Applying our induction hypothesis twice, we get

$$
\begin{aligned}
X_{n+1} & =\left(b \cdot f_{n}+a \cdot f_{n-1}\right)+\left(b \cdot f_{n-1}+a \cdot f_{n-2}\right) \\
& =b \cdot\left(f_{n}+f_{n-1}\right)+a \cdot\left(f_{n-1}+f_{n-2}\right) \\
& =b \cdot f_{n+1}+a \cdot f_{n}
\end{aligned}
$$

The last line comes from the Fibonacci property.
Please note that, in the inductive step when $n+1=3$, we used the fact that $\left(^{*}\right)$ holds for both $n=2$ and $n=1$. Therefore we needed to prove two consecutive base cases (the $X_{2}$ case as well as the $X_{1}$ case).

Exercise 2 (10 points) How many different arrangements can be formed using the letters Manhattan?

Solution: In Manhattan there are $3 a, 2 n, 2 t, 1 m$ and $1 h$ for a total of 9 letters. Theorem 22.9 from the notes gives the number of different arrangement via th following formula. If you don't recall it, you can still find it saying there are 9 ! arrangements if all the letters were different, and you count a same arrangement $n_{i}$ ! times when letter $i$ appears $n_{i}$ times.

$$
n=\frac{9!}{3!\cdot 2!\cdot 2!\cdot 1!\cdot 1!\cdot 1!}=15120
$$

Exercise 3 (10 points) How many positive integers with five digits or less have neither their first digit equal to 3 nor their last digit equal to 5 ?

Solution: We are going to count the relevant number of integers by considering successively integers with exactly one digit, then exactly 2 digits, etc up to 5 digits, each time with the formula: total number of integers minus those which are disqualified.

1. Between 0 and 9 , there are $10-1-1-1=7$ relevant numbers. ( 0 is not positive, 3 and 5 are not allowed).
2. Between 10 and 99, there are $90-10-9+1=72$ relevant numbers. There are 90 numbers between 10 and 99. Among them 10 begin by a 3 (30, 31, 32, .., 39). Among them 9 end by a $5(15,25,35,45$, etc.). And we counted twice 35 , so we add 1 . Another way to count is the following: 8 possibilities for the first digit (shouldn't be 0 nor 3 ), and 9 for the last one, that is $8 \times 9=72$
3. Between 100 and 999 , there are $900-100-90+10=720$. Same reasoning, there are 900 numbers between 100 and 999 , among them 100 start by a 3 and 90 end by a 5 . If you don't see the 90 , it comes from 100 (all number between 0 and 999 ending by a 5 , minus the 10 ones which only have 1 or 2 digits. Here again we have counted $305,315,325$, etc. twice.
Or, 8 possibilities for the first digit (not 0 nor 3 ), 10 for the one in the middle, and 9 for the last one (not 5 ), $8 \times 10 \times 9=720$.
4. Between 1000 and 9999, there are $9,000-1000-900+100=8 \times 10 \times 10 \times 9=7,200$.
5. Between 10000 and 99999, there are $90,000-10,000-9,000+1,000=8 \times 10 \times 10 \times 10 \times 9=$ 72, 000.

There are N of those numbers:

$$
N=7+72+720+7,200+72,000=79,999
$$

Exercise 4 (10 points) Using Pascal's Triangle expand $(2 x-y)^{7}$. Draw the corresponding portion of the Triangle. Feel free not to simplify the coefficients.

## Solution:

$$
\left.\begin{array}{rlrlllll}
(2 x-y)^{7}= & \sum_{i=0}^{7} C_{7}^{i}(-1)^{7-i} 2^{i} x^{i} y^{7-i} & 1 & & & & & \\
= & 2^{7} x^{7}-7 \cdot 2^{6} x^{6} y+21 \cdot 2^{5} x^{5} y^{2}-35 \cdot 2^{4} x^{4} y^{3} & 1 & 1 & 3 & 3 & 1 & \\
& & 1 & 2 & 1 & & & \\
& +35 \cdot 2^{3} x^{3} y^{4}-21 \cdot 2^{2} x^{2} y^{5}+7 \cdot 2 x y^{6}-y^{7} & 1 & 4 & 6 & 4 & 1 & \\
= & 128 x^{7}-448 x^{6} y+672 x^{5} y^{2}-560 x^{4} y^{3} & 1 & 5 & 10 & 10 & 5 & 1 \\
& +280 x^{3} y^{4}-84 x^{2} y^{5}+14 x y^{6}-y^{7} & 1 & 6 & 15 & 20 & 15 & 6 \\
& & 1 & 7 & 21 & 35 & 35 & 21 \\
7 & 1
\end{array}\right]
$$

Exercise 5 (10 points) How many positive integers are there less than 10000 such that the sum of their decimal digits is 12 ?

Solution: We have

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=12 \tag{1}
\end{equation*}
$$

Where the $x_{i}$ 's are nonnegative integer; as usual for this type of problem $x_{i}$ represents the $i^{\text {th }}$ digit.
The number we are looking for is the number of solutions to (1) subject to the constraint (C).

$$
\begin{equation*}
x_{1} \leq 9 \text { and } x_{2} \leq 9 \text { and } x_{3} \leq 9 \text { and } x_{4} \leq 9 \tag{C}
\end{equation*}
$$

The number of solutions to (1) subject to (C) is the number of solutions without constraints minus the number of solutions with the complement $\left(D_{1}\right)$ of the constraint (C).

$$
\begin{equation*}
x_{1} \geq 10 \text { or } x_{2} \geq 10 \text { or } x_{3} \geq 10 \text { or } x_{4} \geq 10 \tag{1}
\end{equation*}
$$

If we look at the complement of the constraint: we get a disjunction as the constraint.
Now, the key observation is that the four disjuncts are pairwise disjoint, since if $x_{i}$ and $x_{j}$ $(i \neq j)$ are both larger or equal to 10 , then the sum clearly exceeds 12 . So the number of solutions to (1) subject to $\left(D_{1}\right)$ is simply four times the number of solutions to $(1)$ subject to $\left(D_{2}\right)$.

$$
\begin{equation*}
x_{1} \geq 10 \tag{2}
\end{equation*}
$$

The standard techniques ("stars and bars") yield:
(1) unconstrained: $12+4-1$ choose $12 \quad C_{15}^{12}=455$ solutions
(1) subject to $\left(D_{2}\right): 2+4-1 \quad$ choose $2 \quad C_{5}^{2}=10$ solutions

Subtracting, we get the number of solutions of (1) subject to (C): 455-4×10=415 solutions.
Exercise 6 ( 10 points) The deck of cards contains 52 cards. There are 13 different kinds of cards: $2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{D}, \mathrm{K}, \mathrm{A}$. There are also four suits: spades, clubs, hearts, and diamonds, each containing 13 cards, with one card of each kind in a suit. What is the probability that a given poker hand of five cards is a royal flush (A,K,D,J,10 of the same suit)?
 $\mathrm{K} \odot \mathrm{D} \odot \mathrm{J} \odot 10 \diamond),(\mathrm{A} \diamond \mathrm{K} \diamond \mathrm{D} \diamond \mathrm{J} \diamond 10 \diamond),(\mathrm{A} \boldsymbol{\mathrm { K }} \boldsymbol{\mathrm { \& }} \mathrm{D} \boldsymbol{\&} \mathrm{J} \boldsymbol{\&} 10 \boldsymbol{\&})$.

There is a total of $C_{52}^{5}$ possible hands. Therefore the probability of getting a royal flush is $P=\frac{4}{C_{52}^{5}} \approx 1.5410^{-6}$.
Note: Especially in probabilities, it is very easy to get things wrong, you should always explain what you do, a bunch of numbers doesn't prove anything, and nobody has a clue of what you are doing. I gave more credits to wrong answers with explanations than to the presumably same wrong answers without explanations.

Exercise 7 (10 points) A fair coin is tossed five times. What is the probability of getting exactly four heads, given that at least one of the tosses is heads?

## Solution:

The number of relevant possibilities is $C_{5}^{4}=C_{5}^{1}=5$, and the total number of possibilities is all those which have at least one heads, that is $2^{5}$ minus the number of possibilities with no heads at all, which is 1 . Therefore $P=\frac{5}{2^{5}-1}=\frac{5}{31} \approx 0.16$.

Exercise 8 (20 points) Some tribe values boys so much that each of their families keeps making kids until they get a boy (after which they relax and make no more kids). On the other hand, no family can afford having more than five kids. So if the first five babies in a family are girls, the family stops making children anyway. Assuming that a boy and a girl are equally likely, consider two random variables $X$ - "the number of boys in a family", $Y$ - "the number of girls in a family".
a) Find the expected values $E(X)$ and $E(Y)$ and compare them.
b) Are $X$ and $Y$ independent?
c) Find the expected value $E(X+Y)$.

## Solution:

A family will always raise exactly one boy, except if they get 5 girls, in which case they won't get any boy. So $P$ (one boy) $=1-\frac{1}{2^{5}}=\frac{31}{32}$ and $E$ (number of boys) $=E(X)=\frac{31}{32} \approx 0.97$ boys.

$$
\begin{array}{rlrl}
P(\text { no girl }) & =P(Y=0)=\frac{1}{2} & \text { A boy as their first kid } \\
P(\text { one girl }) & =P(Y=1)=\frac{1}{2} \cdot \frac{1}{2} & \text { A girl and then a boy } \\
P(\text { two girls }) & =P(Y=2)=\left(\frac{1}{2}\right)^{3} & \text { A girl, a girl again, and then a boy } \\
P(\text { three girls })=P(Y=3)=\left(\frac{1}{2}\right)^{4} & \text { A girl three times, and then a boy } \\
\begin{aligned}
P(\text { four girls }) & =P(Y=4)=\left(\frac{1}{2}\right)^{5}
\end{aligned} & \text { A girl four times, and then a boy } \\
P(\text { five girls }) & =P(Y=5)=\left(\frac{1}{2}\right)^{5} & \text { Five girls, and then they stop } \\
E(\text { number of girls })=E(Y) & =\sum_{i=0}^{5} i \cdot P(Y=i) \\
& =\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+\frac{5}{32} \\
& =\frac{8+8+6+4}{32}=\frac{31}{32} \\
\approx 0.97 \text { girls }
\end{array}
$$

a) The expected number of boys is equal to the expected number of girls.
b) $X$ and $Y$ are certainly not independent since $(Y=5) \Rightarrow(X=0)$.
c) $E(X+Y)$ is always $E(X)+E(Y)$ even when $X$ and $Y$ are not independent.

$$
E(X+Y)=2 \cdot \frac{31}{32}=\frac{31}{16} \approx 1.94 \text { children }
$$

You can also consider $Z$ the random variable number of children $Z=X+Y$, compute the $P(Z=i)=\frac{1}{2^{i}}=P(Y=i-1)$ for $i \in\{1,2,3,4\}, P(Z=5)=\frac{1}{2^{4}}=P(Y=4)=P(Y=5)$. And then $E(Z)=\sum_{i=1}^{5} i \cdot P(Z=i)=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{16}=\frac{8+8+6+4+5}{16}=\frac{31}{16}$, but this is a waste of time.

