CS280, Prelim 1

March 6, 2001

Full name:
Student ID:
Statement of integrity: I did not, and will not, break the rules of academic integrity on this exam.

(Signature)

Show all your work. Calculators are allowed.

1. (10 points) Find a proposition $A(p, q, r)$ given its truth table

p	q	r	$A(p, q, r)$
F	F	F	F
F	F	T	F
F	T	F	T
T	F	F	F
F	T	T	F
T	F	T	T
T	T	F	T
T	T	T	F

2. (10 points) Show that $\exists x(A(x) \rightarrow B(x))$ and $\exists x A(x) \rightarrow \exists x B(x)$ are not logically equivalent.
3. (10 points) Which of the following are true? (Yes or No answers, $P(X)$ is the powerset of X, i.e. the set of all subsets of X.)
(a) $\emptyset \in\{\{\emptyset\}\}$
(b) $\emptyset \subseteq\{\{\emptyset\}\}$
(c) $\{\emptyset\} \in\{\{\emptyset\}\}$
(d) $\{\emptyset\} \subseteq\{\{\emptyset\}\}$
(e) $\{\emptyset\} \in P(\{\{\emptyset\}\})$
4. (10 points) Let $f: S \longrightarrow T$ and $g: T \longrightarrow U$ be functions. The composition of functions g and f, denoted by $g \circ f$, is defined by $(g \circ f)(a)=g(f(a))$.
a) Prove that if $g \circ f$ is one-to-one, so is f.
b) Find an example where $g \circ f$ is one-to-one but g is not one-to-one.
5. (10 points) Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
0 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
-6 & 5 \\
-4 & 3 \\
-2 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
5 & -6 \\
3 & -4 \\
1 & -2
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)
$$

Find $A \cdot B+A \cdot C+A \cdot D$.
6. (10 points) Fermat's Little Theorem: if p is a prime which does not divide a then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Find $7^{1000002} \bmod 101$. The answer should be a nonnegative integer less than 101.
7. (20 points) Using the Chinese Remainder Theorem find a positive integer $x<1287$ (1287 $=9 \cdot 11 \cdot 13$) satisfying all three conditions below $x \equiv 3(\bmod 9)$,
$x \equiv 1(\bmod 11)$,
$x \equiv 1(\bmod 13)$.
8. (10 points) Prove by induction that for any positive integer n

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}
$$

